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ABSTRACT OF THE DISSERTATION

Error-Coded Algorithms for On-Line Arithmetic

by

Abdolali Gorji-Sinaki
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1981

Professor Milos D. Ercegovac, Chair

Since on-line arithmetic requires relatively 1long se-
quences of operations in order to achieve speed-up over con-
ventional arithmetic, it is important to protect on-line al-
gorithms against hardware failures. If not protected, the
hardware failures could quickly contaminate large number of
results in progress due to tight coupling of the steps at
the digit level. By detecting errors, as they occur, an ef-
fective, gracefully degradable organization could be
achieved. Namely, error at any step of the algorithms would

lead to restriction of precision (significance) of the
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remaining steps but not catastrophic termination.

The main objective of this dissertation is to develop
and demonstrate the feasibility of error-coded on-line ar-

ithmetic suitable for distributed systems.

In this thesis a set of error-coded on-line algorithms
was developed for the four basic operations of
addition/subtraction, multiplication and division. Low cost
arithmetic error codes (Residue and AN Codes) were found to

be suitable for this purpose.

Hardware design of the error-coded units at the gate
level was considered. A residue~coded on-line division unit
was designed based on a already designed digit-slice divi-

sion unit.

A general mathematical model for the cost and speed of
the error-coded units was derived and was compared with
similar values when no error code is used. Finally, the ef-
fectiveness of the proposed detection/correction schemes was

considered ard proved.
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CHAPTER 1

INTRODUCTION

1.1 Motivations and Objectives

This thesis is concerned with the development of a set
of error coded basic algorithms for on-line arithmetic. In
on-line processing the operands, as well as the results,
flow through the arithmetic unit in a digit-by-digit manner
starting with the most significant digit. On~line arithmet-
ic provides a simple approach to achieve higher computation-
al rates by allowing overlap at the digit level between the
successive operations [ERC 75, TRI 77, IRW 77]. 1In particu-
lar, on-line arithmetic is highly attractive in some special
applications, such as serial real-time processing, variable
precision arithmetic and data flow architecture. Because of
the serial nature of the algorithms, they might be used ef-
fectively in conjunction with large serial memories (CCDs,
Bubble, etc.). On-line arithmetic offers a number of trade-
offs in system organization (interconnection and memory

structures) that warrant additional research in this area.

Since on-line arithmetic requires relatively 1long se-
quences of operations in order to achieve speed-up over con-

ventional arithmetic, it is important to protect on-line al-

i
i
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gorithms against hardware failures. If not protected, the
hardware failures could quickly contaminate large number of
results in progress due to tight coupling of steps at the
digit level. By detecting errors, as they occur, an effec-
tive, gracefully degradable organization could be achieved.
Namely, error at the j-th step would lead to restriction of
precision (significance) of the remaining steps but not ca-

tastrophic termination.

In this thesis we address the problem of developing
such detection and correction procedures. We shall show that
low-cost arithmetic error codes can be used effectively to
support error-coded on-line arithmetic. Low cost error
codes are advantageous because of the very simple checking

procedure and cost-effective implementation.

In the rest of the current chapter we review the
state-of-art in on-line algorithms and consider some of
their properties and applications. In Chapter 2 of this
thesis a summary of the existing error-codes will be given.
Chapter 3 and 4 are the main results of this work and deal
with the presentation of the detection/correction schemes
and their hardware implementation. In Chapter 5 performance
of the error-coded units will be considered and their cost
and speed will be compared with the corresponding ordinary
on-line units. Chapter 6 contains the summary of the results

obtained and some suggestions for the future research in the

X




area of on-line arithmetic.




1.2 On-Line Arithmetic

1.2.1 Definitions

By on-line algorithms we mean those arithmetic algo-
rithms in which the operands as well as the fesults flow
through the arithmetic unit in a digit-by-digit fashion,
most significant digits first. These algorithms are such
that, in order to generate the j-th digit of the result,
(j+8) digits of the corresponding operands are required. 8
is called the on-line delay and is preferred to be as small

as possible (Figure 1.1).

ON — LINE
———..1‘-
t: 12 ... 86541 ... nn¥l ... n¥
XgXg .. Xg Mgoq +.- o ... 0
INPUT 1%2 5 X5 +1 Xn
Y1Y2 «+- Y5Y547 - Yo 0 ... O
OUTPUT: - - ... - 29 ...2Z, 5 ... 2,

Figure (1.1)- An On-Line Arithmetic Unit
It is not difficult to see that the use of redundant number
representation is mandatory for on~line algorithms. If we

were to use a non-redundant number system, then even for

e W - e W 5




simple operations like addition and subtraction there is an i ]

i on-line delay of 8=m due to carry propagation (m is the

length of the operands). By using the signed-digit
representation of numbers [AVI 61], it is possible to limit ;

the carry propagation to one digit position.

1.2.2 Background )

In general, an on-line algorithm is specified recur-

sively in term of on-line representation of operands,

results and some internal values. The following are the

steps of a typical on-line algorithm:

A PR

1. Initialization:

2, Basic Recursion Step:

Py=f{Py_1+ X446/ Yjeg/25)

Where f is a linear function and Pj is the partial result.

3. Selection Step:

z,

ST oy e I P T T N AL A T <1 T

pE

Several of the well known basic algorithms satisfy the

on-line property with respect to either the operands or the

results. Consider, for example, conventional division which
has the on-line property with respect to the quotient di-
gits. Similarly, conventional multiplication has the on-line

property with respect to the multiplier. This property has

later been extended to the product digits as well.




As was mentioned earlier in this section, allowing
redundancy in number representation will speed up the opera-
tion by limiting the carry propagation. A well known example
is the totally parallel addition/subtraction with 8=1 [AvVI
61]. More recent work in the area of on-line computation has
been done by Ercegovac and Trivedi [ERC 75, TRI 77 and, TRI
78]. They developed on-line algorithms for multiplication
and division. An overview of the generalized (with respect
to radix) on-line algorithms for addition/subtraction, mul-
tiplication and, division has appeared in [IRW 77] along
with the design of an on-line arithmetic unit. Others have
extended on-line algorithms to encompass the on-line square
rooting [ERC 78, OKL 78] and on-line normalization [GRN 79].

Also, a systematic method for derivation of on-line

addition/subtraction, multiplication and, division algo-

rithms appears in [GOR 80]. Several on-line algorithms such
as y=ax+b. have been developed and used in iterative struc-
tures for array computations. Typical problems, such as
matrix-vector multiplication and solviﬁg linear recurrence
systems, have been investigated and corresponding solutions
using on-line approaches are proposed and evaluated [ERC 80,
GRN 80]. Other on-line algorithms and structures are re-
ported in [(CHU 80]. In order to efficiently explore and
develop on-line algorithms a highly functional simulator has
been developed and it is running on a DEC VAX 1I11/780 [RAG

801].




1.2.3 Performance of On-Line Algorithms

There are seven major criteria that should be con-
sidered in evaluating the performance of a computational al-

gorithm. These seven criteria are listed below:

l. Speed: throughput and delay

2. Cost: processor, processor types and, storage require-
ments.

3. Control efficiency

4. Interconnection requirements

5. Flexibility

6. Modularity

7. Reliability/"Robustness" of the algorithms.

The potential of on-line arithmetic in achieving a high
performance has long been recognized and because of this
property, a number of basic on-line algorithms have been
developed in the 1literature (for the corresponding refer-
ences see 1.2.2). Also a paper, written by Ercegovac and
Grnarov [ERC 80], analyzes the performance of on-line arith-
metic structures. It provides a relative comparison with the
conventional arithmetic in computational problems such as
the evaluation of scalar and vector expressions and re-
currence systems. In what follows we analyze the performance

of on-line algorithms with respect to the seven criteria

mentioned above.
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Speed

The speed-up of on-line algorithms is achieved by con-
sistently applying a digit-serial mode of operation where
the operands and the results are processed beginning with
the most significant digit. Therefore, successive operations
can be overlapped at the digit level and the interconnection
requirements between arithmetic units are reduced to a
minimum. Also by using a redundant representation of the
partial results, it is possible to limit the carry propaga-
tion. Consequently the time required to compute one output

digit can be made independent of the length of the operands.

Using a higher radix may also increase the speed of the
computation by reducing the necessary number of steps for a
given precision. But at the same time it increases the time
to perform the basic recursion and the complexity of the
corresponding on-line unit. Ercegovac and Grnarov in their
paper [ERC 80] compared the speed of a multilevel on-line
unit with the corresponding conventional unit demonstraﬁing
that for m=32 (m is the number of digits of the result), a
network with two or more levels is faster in on-line arith-
metic than in conventional arithmetic. They also showed that
the time required to perform an operation is 1linearly pro-
portional to the required precision. The results of their
study indicate that by using on-line arithmetic (besides

highly reduced communication requirements and modular, uni-

-~
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form implementation) one can expect an additional speed-up

factor of 2-10.

Pipelining of successive operations can also be used as
an effective speed-up technique [AVI 70, TUN 70, ERC 80J). In
this scheme multiple on-line units are connected together in
such a way that when the first unit completes processing, it
passes all the necessary informations down the pipe and to
the next wunit. When one unit has completed all of the pro-
cessing associated with the present operation, the next unit
in line can begin generating the next result}§igit associat~-
ed with that same instruction. In this way, the fraction ar-
ithmetic unit, which has been traditionally considered as a
single stage of the pipeline, can be further decomposed into
multiple stages to speed up processing even more. Chaining
operations on result digit as they become available can in-

crease processing speed even more.
Cost

The cost of on-line networks is a function of the cost
of on-line arithmetic units and the cost of communication
between the corresponding modules. Since in an on-line en-
vironment the interconnection between modules is via a one-
digit wide link, the communication cost 1is obviously less
than that of a conventional network. In a conventional net-
work the number of data links between two moduleé is propor-

tional to the number of digits transferred which is usually
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a full precision number. On the other hand the number of
modules required to implement a conventional arithmetic unit
is at least proportional to m, while the corresponding
number in an on-line environment is proportional to m/2 [ERC
80]. This factor also reduces the cost of on-line networks
with respect to conventional one. Ercegovac and Grnarov [ERC
80] proved that the sufficient condition needed for an on-
line, non-pipelined network to be less costly than the con-~
ventional one is that the cost of the on-line modules should

not be more than twice the cost of the conventional module.
Control

Typically, the most random part of any system is its
control logic. This randomness in logic makes the design of
the control part of the system cumbersome and expensive. 1In
order to alleviate this problem it is possible to micropro-
gram the on-line unit possibly via a PLA to avoid randomness
in control logic. On the other hand, since the basic compu-
tational step, in an on-line algorithm, is invariant at
every step j and the only primitive arithmetic operation is
addition, the control section can be designed in a straight-
forward manner. Ercegovac showed that the control require-
ments of an on-line unit is very simple. Assuming a syn-
chronous mode of operatign of the entire configuration, he
showed that, the synchronizing clock pulses on which the

transfer of digits occur, are all that is needed and the
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same clock pulses, defining the basic step, are distributed
to all units [ERC 75]. Finally, it is worth noting that,
even though the on~line algorithms are iterative in nature,
there are no convergence tests to be performed and this

makes the control part simple and deterministic.

Interconnection Requirements

As was mentioned earlier in this section, one of the
advantages of on-line units, in addition to a simple comput-
ing block, is the simplicity of communication between the
corresponding modules. This reduction in internal and exter-
nal communication requirements, comes from the fact that
each module's control sees only its own state, therefore the
interconnection among the elementary on-line units requires
only single digit links. With regard to this, the structure
using on-line arithmetic can be implemented in a highly
modular manner. Pipelining of the on-line modules will also
increase the complexity of the units, while the communica-
tion required between units will increase the links and

therefore the pin count of each unit.

Flexibility

The ability of the on-line methods to perform without
severe degradation while wusing the limited resources, (in
other words their implementation flexibility) is also of

practical importance. The on-line structures are easily ex-
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tendible to accommodate either more levels or higher preci-

sion. Ercegovac proved that the proposed on-line method can
be implemented under a wide range of speed/cost constraints
in a simple way [ERC 75]. His method requires for the
fastest evaluation, a configuration of m identical elementa-
ry units, but allows, in a straight forward manner, exploi-
tation of its flexibility in tradeoff between the speed and
cost. The cost change in precision, in the number of ele-
mentary units or in their complexity, affects the speed of

computation linearly.

Modularity

It was previously mentioned that, the interconnections
in an on-line arithmetic network are much simpler than in a
conventional one, since only single digits are transferred
between the operational units. Therefore, the structures us-
ing on-line arithmetic can be implemented in a highly modu-
lar manner. This property makes the arithmetic unit expand-
able both from the individual chip and the overall system
viewpoint. In order to achieve this, the processing logic of
on-line units should be partitioned to make it suitable to
LSI. Logic partitioning involves the organization of the
internal logic structures so that large functional areas(or
arrays) on the chip can be grouped together and used repeti-
tively. External to the chip, functional partitioning of the

overall system requires a framework consisting of modules

12




which are completely self-~contained processors, each having
its own local store, processing logic, and the control
necessary for the module to execute its function. Thus, each
module acts as a small insular unit of logic. A good exam-
ple of such a building block, for signed-digit arithmetic,
is the single-package arithmetic processor called the Arith-
metic Building Element (ABE) [AVI 70]. 1In the on-line en-
vironment, a typical module, implemented in a LSI technique,
can be a 16 bit unit with a 4~ operand adder, 4 registers,
and a selection and carry block which can be by-passed so
that a larger precision unit can be simply constructed by
concatenating the required number of basic modules [ERC 75].
An organization of on-line unit as a linear array of identi-

cal modules operating in parallel is shown in Figure 1.2.

I oy XT YI.;
EV 1 2 P

_ i
Figure (1.2) A Modular Organization of an On-Line Unit
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Reliability

The reliability of on-line algorithms is of the major
concern in this thesis. We are trying to enhance their
"robustness" by applying erivor detection and correction to
the already developed algorithms. The main result of this
work is presented in Chapter 3 where error coded algorithms
for four basic operations of addition, subtraction, multi-
plication and division are defined. Low-cost arithmetic er-
ror codes (Residue and AN codes) are found to be perfectly
suitable for this purpose because the checking procedure is

very simple and cost-effective to implement.




1.2.4 Applications

On-line arithmetic has a wide range of applications
which makes it interesting for investigation in LSI technol-

ogy. In what follows we review some of these applications

with regard to the fact that some new applications may occur

as advances are made in technology.

The most obvious use of on-line arithmetic 1is in the
area of real-time processing in which the operands are gen-
erated serially by an analog-to~digital conversion process
beginning with the most significant digits. An on-line unit

can be used to process these digits as soon as they become

PRSI ISR SRl s o

available. This is unlike the conventional setup, where the
processing unit must wait while the full precision operands

are converted before starting the operation. The speed up

N g mmad 3.

benefits are obvious. In fact, any system designed to be of
use in a real-time environment can make significant gains

with the addition of an on-line module to its hardware.

Another possible application is in performing variable
precision arithmetic. The existing algorithms and their
simple implementation requirements are compatible with the
required modularity of any variable precision uﬁit. It is

believed that sufficient register and adder widths can be

provided by 1large scale integrated technology to provide

enough "variable precision arithmetic" to meet the demands

é of most applications [AVI 62]. As a result, a unit which
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operates in an on-line fashion can provide the ever popular
microprocessor, a device traditionally restricted from most
mathematical applications because of its short word 1length,

with variable precision arithmetic capabilities.

Large-Scale computing applications of on-line arithmet-
ic has been considered in [WAT 80]. In this research a mul-
tiprocessor organization for large~scale numerical behavior

of algorithms has been studied.

On-line arithmetic can also be used in conjunction with

large serial memories (CCDs, Bubble memories, etc.). This
application depends on technological improvements of the
foregoing memories. The major user of the large serial
memories will be data base systems. Therefore, on-line ar-
ithmetic can provide instant processing capabilities for

such a data base system.

As a final word, on-line arithmetic is complementary to

other approaches that are used to achieve concurrency in ex-
ecution of algorithms. For example, it can be used in
minimal-depth tree-structured networks. In particular, the
use of on-line arithmetic in non-linear recurrences systems
would be advantageous [ERC 80]. They are very attractive in

reconfigurable networks because of high modularity and sim-

ple interconnection.




CHAPTER 2

ERROR CODES

2.1 General Remarks on Error Codes

Computation without error remains an illusive goal of
considerable importance in certain critical applications
which require sophisticated and extensive computation with a
high degree of system reliability. Recent advances in solid
state technology have provided individual devices with ex-
ceptional reliability. In some systems, this improvement in
device reliability has achieved sufficient systems reliabil-
ity. However, in others, the large number of devices re-
quired has negated the improvement in reliability at the
systems level. Such problems can be solved by the unlikely
development of a perfect device which never fails. In the
absence of such a device, one can expect greater use of the
techniques of fault-tolerant computing to obtain improved
systems reliability. Such improvements are not obtained
without degradation in performance or increase in cost of
the equipment, but in many applications, this tradeoff is

justifiable.
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One of the major approaches to fault-tolerant computing
is the use of error detecting and error-correcting codes. In
a practical system there are occasional errors, and it is
the purpose of codes to detect and, perhaps, correct such
errors. These codes cannot correct every conceivable pattern
of errors but rather must be designed to correct only the
most likely patterns. Much of coding theory has been based
on the assumption that each symbol is affected independent-
ly, so that the probability of a given pattern depends only
on the number of errors. For example, codes have been
developed that correct any pattern of t or fewer errors in a
block of n symbols. Also, for those systems in which errors
may occur in bursts, some special kind of codes called
"burst error codes" have been devised. In the following sec-
tion we summarize the existing error codes with a special
attention to arithmetic error codes. We will be using these

types of codes throughout the rest of this dissertation.
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2.2 Types of Codes

There are two fundamentally different types of codes:
linear and non-linear codes. Between these two classes of
codes, linear codes are more important and, because of this,
have a well developed mathematical theory. In our review of
error codes we only deal with a subset of all linear codes
and therefore from now on we restrict our attention only to
this class of codes. Linear codes are in turn divided into
two classes: block codes and tree codes. The encoder of a
block code breaks the continuous sequence of information di-
gits into k-symbol sections or blocks. It then operates on
these blocks independently according to the particular code
to be employed. With each possible information block (k-
symbols) is associated an n-tuple where n>k. The result, is
now called a codeword. The quantity n is referred to as the

code length or block length.

The other subset of linear codes, called a tree code,
operates on the information sequence without breaking it up
into independent blocks. Rather, the encoder for a tree
code processes the information continuously and associates
each long information sequence with a code sequence into 1-
symbol blocks, where 1 is usually a small number. Then, on
the basis of this l-tuple and the preceding information sym-
bols, it emits an m-symbol section of the code sequence. The

name "tree code" stems from the fact that the encoding rules




for this type of code are most conveniently described by

means of a tree graph.

Of the two classes of codes, the older block codes have
a considerably better developed theory. The reason for this
seems to be that block codes are more closely related to es-
tablished, relatively well understood, mathematical struc-
tures. As a result, considerably more research has been done
on them than on tree codes [PET 72]. Block codes are in turn
divided into three basic subsets: Cyclic Codes, Non-cyclic
Codes and Quasi-Cyclic Codes. Among these three categories
we are interested in a subset of non-cyclic codes which are
called "Arithmetic Error Codes". These codes differ from
all those previously stated in that all operations are ordi-
nary arithmetic. These codes are practical: they can be used
for data transmission with encoding and operations performed
by a general-purpose computer or they can be used to check
the operation of an adder. There is an interesting similar-
ity 1in structure between arithmetic codes and cyclic codes.
Residue, Inverse-residue and AN codes belong to this class
of codes. Figure 2.1 summarizes the relation among different

error-codes in a hierarchical manner.
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2.2.1 Arithmetic Error Codes

An arithmetic code for us is a redundant representation
of numbers having the property that certain errors can be
detected and/or corrected in arithmetic operations using
these codes. The representation is redundant in that the
number of digits used for representing a number in a coded
form may be larger than the minimum number of digits re-
quired if no error control is desired. The fundamental ar-
ithmetic operation 1is addition. Therefore, any useful ar-
ithmetic code must at least have the capability to check ad-
dition. Preferably, all other elementary operations, such as

multiplication and division, should be checked as well.

To represent the set of integers Zm ={0,1,....,m-1}, in
the radix r system, the number of digits required, k, is the
smallest integer greater than or equal to 1ogrm . Instead
of using k digits, as minimally required to represent Z2, . a
redundant code uses n digits for some n>k. This may be in
the nature of adding an extra n-k digits as checks to the
non-redundant form of k digits; or it may be to denote each
number N<Zm by a product AN for some constant integer A.
Since these codes are used in checking arithmetic opera-
tions, it 1is important to define how these operations are
carried out on redundant forms. Depending on how a number
N‘Zm is represented as an n-tuple or how arithmetic is per-

formed on the codewords, the codes are classified as
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separate or non-separate, and as systematic or non-

systematic.

Definition 2.1

An arithmetic code, which has each codeword represented
by, say, n digits is systematic if there exists a set of k
digits (k<n) of the codeword representing the information

and the remaining n-k digits representing the check(s).

A systematic code may treat the two parts, i.e., the
information digits and the check digits, separately for the
purpose of addition, thereby defining two or more indepen-
dent addition structures, one for the information and the
others for the checks: or it may treat each codeword as a
single operand (or number) and define uniform addition rules
for all n digits except perhaps for some end-around carries.
A systematic code of the former type is called separate, and
the latter none-separate. A similar division into separate
and nonseparate classes can be made for all codes. Based on
the preceding, arithmetic codes fall into these three major
classes: 1) AN codes which are nonsystematic and therefore
nonseparate; 2) separate codes with one or more residue
check, for example (N, N mod A) residue code; and 3) the
systematic subcodes, which are also called systematic non-
separate codes. The AN codes were first introduced by Dia-

mond [DIA 55], and their detection and error correction pro-

perties were discussed by Brown [BRO 60] and Peterson [PET

—



72]). The separate codes using a single residue check, such
as (N, N mod A) code can only provide error detection for
all arithmetic related operations, but not correction and,
therefore, are of limited value [RAO 72]. 1In order to ob-
tain error correction by use of separate codes, two or more
residue checks are required, and that has led to the intro-
duction of multiple residue codes [AVI 67, AVI 69, RAO 70].
The systematic subcodes appear to have error detection
and/or correction properties similar to AN codes while

preserving the advantages of systematic codes.

2.2.2 Low-Cost AN and Residue Codes

In an AN code, a given integer N is represented by the
product A*N for some suitable constant A. A is commonly
called the generator (and sometimes check modulus) of the
code. The search for values of A which have a low-cost
checking algorithm identified the class of low-cost arith-

metic codes which employ the check moduli of the form

A=2%-1, with integer a>l. (2.1)
"a" is called the group length of the code [AVI 71]. AN
codes with the check modulus 23-1 display an exceptional
adaptability to binary arithmetic and have a low cost check-
ing algorithm when the lengths of the operands are some mul-

tiple of the check length a.
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As was mentioned earlier in this section, residue codes
are categorized as separate codes. Indeed, Peterson proved
that a separate code, meaning a code whose information and
checks are separately processed, must be a residue code [PET
72]. The modulo A residue encoding for a number N attaches a
check symbol C(N) to form a pair (N, C(N)). The value of

| C(N) is:

C(N)=N mod A (2.2)
Where (N mod A)=|N|A designates the modulo A residue of N.
The most significant differences of implementation between
AN and residue codes are caused by the property of separate-
ness. For residue codes, the operands Nl and N2 and their *
check symbols C(Nl),C(Nz) enter separate (main and check)
processors which produce the main result N3 and the check
result C(N3). The checking algorithm computes (N3mod A) and
compares it to C(N3). 1If the values are equal, either the
correct result has been obtained, or a miss has occurred.
Disagreement indicates a fault in either the main or the
check processor. But for the nonseparate AN code the check-
ing algorithm computes (N3mod A), where N3 is the value of
the result. The case (N3mod A)=0 indicates either a correct
result or a miss. Note that the hardware cost of AN codes is
caused by the greater complexity of the main processor,

while for residue codes it 1is because of the need for a

separate check processor. The error detection and correc-

tion properties of AN and residue codes are considered in




Chapter 5.




CHAPTER 3

ERROR CODED ON-LINE ALGORITHMS

In this chapter we present the main result of this
thesis. Our goal is to develop a set of error coded basic
algorithms for on-~line arithmetic with the help of error
codes we defined in Chapter 2 of this dissertation. As was
mentioned in section 1.2.2, on-line algorithms for the four
basic operations of addition/subtraction, multiplication and
division have already been devised and the relevant results
on this subject can be found in [ERC 75, TRI 77, TRI 78, IRW

77, GOR 80].

On-line algorithms have the property that if an error
occurs at a certain step of an algorithm and if this error
is detected immediately after generation and inhibited from
spreading to the next module, then the operation of the fol-
lowing units can be continued although with less precision.
Of course the final results have correspondingly less preci-
sion than the original operands. This shows that on-line
algorithms have an intrinsic property of "graceful degrada-
tion". Of course, if there were some means of error correc-
tion, then this error would not affect the computation and

there would not be any loss of precision. Our task 1is to
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devise such algorithms with the capability of error detec-

tion and/or error correction.

In order to do this, we present two different schemes:
l)error detection with residue-coded operands, 2) error
detection/correction with AN coded operands. Figure (3.1) is

a general block diagram for an on-line unit with residue en-

coding.
X5
MAIN UNIT . x;
. P; ‘
Yi '
—i CHECK > E ;

’f.L :1 UNIT
' RESIDUE | 1o

UNIT IP;'
J z Y;

Figure (3.1)- Block Diagram of A Residue-Coded On-Line Unit

- —— — — - . — - P - P . T S Y S D D W - - D . g - - - -

The operation of this unit is as follows:
Assume that the operands X and Y are represented by m digits

in a radix r redundant number representation system, that

is:




m -
Y= 2 y.r
i=1" %

i
(3.2)

These two numbers flow through the MAIN unit digit-by-digit
most significant digit first. The algorithm which is run by
the MAIN unit (we call this algorithm “MAIN OP") is imposed
on the incoming operands and after certain amount of delay,
the result Z appears at the output, again digit-by-digit

starting with MSD, such that:

1 i (3.3)

At the same time the RESIDUE unit receives the residue
of the corresponding digits of the MAIN unit. We represent

this "residue" operands by X' and Y', such that:

' E" ' l_i

R o (3.4)
’ X_ﬂ_ ’ ,‘i

e R YT (3.5)

The following relation exists between these two sets of

operands:

x'isximod A for i=1,2,....,m (3.6)

y';=y;mod A for i=1,2,....,m (3.7)
where A is the check modulus and was introduced in Chapter
2. We call the algorithm applied by RESIDUE unit as "RESI-
DUE OP". The output of the RESIDUE unit, with a similar

manner, is represented by Z' and is:

ey

X




m
Z'=¥ z'.r (3-8)

Notice that the relation (z';=z;mod A) is not " necessarily

satisfied.

After generation of z, and z'; , MAIN and RESIDUE units
start working on the next set of inputs. At the same time z;
and z'i along with some other information reach the CHECK
unit. CHECK unit operates with an algorithm we call "DETECT

OP". This unit after running the algorithm DETECT OP on z; .

z'i and other received information, decides whether these
results agree with each other or not. If the results do not
agree then it sets an error flag which inhibits all the
operations until the source of error is detected. For exam-
ple, the current step can be repeated by the MAIN and RESI-
DUE units and if the error still persists, the operation can
be continued with 1less precision. It is also possible to
correct this error if we use biresidue codes instead of a
single residue code [AVI 69, RAO 70]. In this thesis we do

not address the problem of error correction by biresidue

codes.

In the second scheme the operands X and Y are encoded
with AN codes. Encoding is done by simply multiplying each
digit of X and Y by a check modulus(A). Denote these encoded

operands by X' and Y' respectively. Therefore:
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X'=A*X

Y'=A*Y

such that:
x'isA*xi for i=1,2,.¢..,m
y'i=A*yi for i=1,2,....,m

The algorithm which operates of X' and Y' is the same
as that for residue encoded operands (Algorithm MAIN OP).
The output digit selection process in this algorithm should
be such that the correct output digit (z'i) is divisible by
A. Therefore each single digit of the encoded operands and
the results can be checked for divisibility by A. If any of
these digits is not divisible by A, then it does not belong
to the correct digit set and an error has occurred. The
overall organization of the AN coded on-line unit 1is shown

in Figure 3.2.

In this case we only need one MAIN Unit and the
corresponding CHECK Unit which tests the operands and the

results for divisibility by A.

This method has the following advantage over the resi-
due encoding. If A is chosen appropriately then error
correction is also possible in this case. We Dbriefly men-~
tioned that in order to correct single errors in the residue

scheme we have to use biresidue codes instead of a single
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residue code. Note that the hardware cost of AN codes is in

the greater complexity of the

residue codes it is in the separate CHECK processor.
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3.1 Error-Coded On-Line Division

3.1.1 Residue Coded Operands

Assume that the dividend N and the divisor D are
represented by m digits in a radix-r redundant number sys-
tem. Also assume that the residue of each digit with
respect to a constant A (A=22-1) is attached to it and is
transferred to the on-line DIVIDE unit. Therefore the coded

operands are:

(NIN.)g'(nllnll)(n20n|2)l'0"'l(nmln'm)

(D.D')=-(d1,d‘l)(dz,d'z),.....,(dm,d'm)

(Q:‘QlA)=-(qlrlq1|A)(q20‘q2|A)°""l(qm"qmlA)
n;. d; and q; belong to the following symetric signed-digit

sets [AVI 61]:
ni4{-p'.,...,—1,0,1,...,9..} (r-l):p'llr/z (3.9)
di4{-p'",..,-1,0,1,..,pl"} (r-l):p"'lr/z (3.10)

q;4{-ps-+-0-1,0,1,...,0} (r-1)2 o 2r/2 (3.11)
The algorithm "MAIN DIVIDE" which is run by the MAIN Unit is

shown in the next page.
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Algorithm "MAIN DIVIDE"

Step 1 [Initialization]:

max -i
P.= 3 n.r
0o . i
i=1

max - _
Do= .z. dir
i=1

i

Qqy=0

For j5=1,2,....,m DO:

Step 2 [Selection]:

qj=SELECT(er_1,Dj_l)
-3
=Q. ,+q.
Q47051797
Step 3 [Input Digits]:
-5-8
DD, ,#d..g T %
3 3 1" nax
Step 4 [Basic Recursion]:
-8 -8
max max
P.=rP. ,-q:D.+n r -Q._ 144 r
s Bkl w5 Ml s s L 3-173+8 (3.12)
Step 5 [End Dol
34




The algorithm run by the RESIDUE unit is similar to

this and is named “RESIDUE DIVIDE".

Algorithm "RESIDUE DIVIDE® t

Step 1 [Initialization]:

(™)
L}
—
T

i=1

Q' =0

For j=1,2,....,m Doz

Step 2 [Selection]:

q'j=SELECT(r'P'j_1,D'j_l)

1 ] ' |'j
. . .+q' .
Q74275 v 5T
step 3 [Input Digits]:
Dl =D| +d| r|_j-§max
j O 3~170 3+8 .o

Step 4 [Basic Recursion]:

-8
P'.=r'P’', ,-q' D' ¥n’, pt X
j §=173 37 377 348,
-Q' a' r‘—smax
j-1 j+8max (3.13)
step 5 [End Do)
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r' is the radix of the RESIDUE unit which should be as
small as possible. smax is the maximum of the on-line de-
lays required by the MAIN and the RESIDUE Units and will be

defined later. Also n'i and d'i are defined as was ex-

plained before:

n'i=nimod A for i=l,2,....,m
d'i=dimod A for i=1,2,....,m
Therefore,
n'i,d'i,lqi|\<{0,1,2,....,(A—l)} (3.14)

The output of the RESIDUE Unit which is the quotient of

residues are assumed to be in the following set:
q'i<{-p?,...,-1,0,l,...,p'} (r'-1)>p'>r'/2 (3.15)

In what follows we prove that the Algorithm "MAIN
DIVIDE" and similarly the Algorithm "RESIDUE DIVIDE" con-

verge to the correct value of the quotient.

Proof of Convergence

By induction on j in the basic recursion formula(Eq.

3.12) we get:

max i 1+8max -3 -smax
j=1 = P.=r ¥ n.,r "-q 2 d.r “+n r
1 jep 1 1 ;o & 1+Smax

.

=ik

Y 3.‘3

P




248 2+8
_max max

-1 —_—
=r ¥ n.r -(rq,+q,) = 4d.r
i=1 * 1727y 1

-i

Continuing this procedure we obtain Pj as follows:

1 1 (3.16)

or

...m=_*
r Pm N-Q*D

From this equation Q is obtained:

P
N __-mm
Q=5 r 45 (3.17)
Therefore, by devising a quotient digit selection procedure,

SELECT in step 4 of the Algorithm "MAIN DIVIDE" such that

|pml<o

the quotient Q=% can be computed to m digits of precision.
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A similar proof is valid for the RESIDUE Unit:

i (3.18)

N’ .-mp'm
Q'=— -r -31— (3-19)

and assuming |P'm|<D' then Q'-E? to m digits of precision.

3.1.1.1 The Error Detection Algorithm

The purpose of this section is to find an algorithm
that can detect an error at each step of the on-line divi-
sion process. This algorithm is run after generation of
a3 and q'i by the MAIN and RESIDUE Units and will determine
whether these quotient digits are correct or not. If an er-
ror is detected then the current step is repeated, otherwise

the division process proceeds as usual.

From Equations (3.16) and (3.18) we have:

J+Smax -i j+8max i L
L a; r = ¥ n,r i_r7Jp,
i=1 1=1 i=1 J
and

J+smax s j+§max s o4
r' Y= £ n'.r* "t~ Ipr,
1=1 1=1

i=1 ' J

By dividing these two equations and getting the residues of




both sides and also assuming:

Ir|A=|r |\=1 (3.20)

we get the following equation:

PRI ST
- * s ] - ] =

Hi’-z—-'lqii H =1 i; '® jl”

Il j | }{j+gmax { :{

| 2 q'.1*) £ n,-lp.l

=Ii=1 ) {I i=1 Y. ] H (3.21)

In the equation above:

|x|=|x|A=x mod A

To simplify Eq. (3.21) the following change of parameters

are done:

RNy
£ q.l =X. and rq.l =x'
(i=1 {a 7 li=1 Y2 J
[ 3 | | 3 |
|J+§max | |J+§pax |
| ¥ n'.| =¥'., and | X n | =Y,
| i=1  ° |oi=1 Fy, d
Therefore (3.21) becomes:
bix ety =1, 1 =bixe s liyat=1ea0 ) (3.22)
R R | IR LN Ee R T R EN

The correctness of this equation is the test that we perform
to detect an error in the division process. The following

algorithm, run by the CHECK Unit, performs this test.
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Algorithm "DETECT DIVIDE"

Step 1 [Initialization]:

X0=X 0=0

For j=1,2,....,m Do:

Step 2 [Input Digits]:

X.=IX. +q.
51X jo1%ayly Y

X' . =|X'., _+g'.
TR TR AR LY

Y j=|Y 3-1*1'

P.and P',
) ]

Step 3 [Check for Error]:

Z.=|X.*(Y'.-|P"'.
3 | 3 (Y 3 | jl\)IA

'om|X  w(Y .-
Z 3 | 3 (YJ 'Pj'a)'a

If (Zj#Z'j) E=1, GOTO ERROR SUBROUTINE

Step 4 [End Do]
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3.1.1.2 Determination of 8§ _

X

In order to have overlap between the adjacent selection
regions of the Pj-Dj plot, the minimum index difference (8)
for the case of redundant dividend and divisor is found to

be [GOR 80]:

§=[2+1og 2(kx +kk Tz)l

T(2x-1)(1-k (3.23)
k,.k and k are defined as:
k=—.&-
r-1
[ ] '_E
k r-1
k = r-1

Since division in the RESIDUE Unit is performed with

non-redundant operands, we get [GOR 80]:

. P 2k'~1
8 [2 logr.——-k.+1] (3.24)
where k =r =5 We define Smax to Dbe the maximum of
8§ and 8'.

Smax=MAx(§,§') (3.25)

3.1.1.3 Radix of The RESIDUE Unit

As was mentioned earlier, the radix of the RESIDUE Unit
is an important factor in the design of the error-coded un-

its. Because, as r' increases the amount of hardware needed
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for the RESIDUE Unit increases. In the extreme case where
r=r' then the detection process is merely duplication of the
MAIN Unit. On the other hand there are some lower bounds for

r' that should be met. These bounds are calculated as fol-

lows:

Since residue digits (n'i,d'i) are assumed to be in ra-

dix r' number system we have:

n'i,d'iir'-l

using Eq. (3.14) we get:

A-1<r'-1l or r'>A (3.26)

from (3.20) and (3.26) we obtain:

r'=M'A+l for M'=1,2,.... (3.27)

and if we assume that A is a low-cost modulus (A=2a¥l) then:

r'=M'2%-M'+1 for M'=1l,2,... (3.28)

also from (3.20) we get:

r=MA+1 for M=1,2,... (3.29)

— - - —

The following is a numerical example of the error-

detection process when residue-coded operands are used.

Assume:
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r=10,k=k =k =§

r'=4,k'=%

A=3

using (3.23) and (3.24) we get &=4 and 8'=4 respectively.

Therefore:
S - f
ni'di'qi‘[5’4'...'l'o'l'..'4'5] ‘
n',,d i<[0,1,2} for i=1,2,...,m
q';+(2,1,0,1,2}
.
Assume:
D=.550234
and

N=.133201

Therefore:

D'=,220101

N'=.100201
using [GOR 80] we get the following er-Dj plot for selec-

tion of the quotient digits of the MAIN Unit.
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Using the selection diagram shown in Figure (3.3) and
the Algorithm MAIN DIVIDE, the following table is obtained

for the operation of the MAIN Unit (Table 3.1).

—— Y = S D S D S W G D S S G D G S D Vs S S R R Y P D P T G Y D G D A S R S D S . -

tm—————— R Frw—m———— R $mmm———— +
| j | P, | Q. | DL | . |
N Sl =2 S B Vs U s SRR
| 1 |.1266 .2 | .54977 | 2 |
tmmmm———— e trm—————— S e ————— +
i 2 |.16646 |.23 |.549774 | 3 |
temmm—m e o o ————— o Fomm e +
| 3 j.015298 |.230 ].549774 | 0 |
e S tomm— e e e +
| 4 |1.15298 |.2303 |.549774 | 3 |
e tomm e o b tomm et
| 5 |-.119522].23032 |.549774 | 2 |
S S el P R e R +
| 6 |-.095672).230322 |.549774 | 2 |
R o e e trmmm +

Table (3.1)- Results Obtained by the MAIN Unit (EX. 3.1.1.4)

According to this table:
Q=Q =.230322

Figure (3.4) shows the selection diagram for the RESI-

DUE Unit.
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|

l
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I i

Figure 3.4 Selection Disgram for the RESIDU
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Similar to Table (3.1), Table (3.2) shows the results

obtained by the RESIDUE Unit.

e e B temm e e +
| j | p'. I Q. [ D', | ' |
+---3----+-_-J:l-_+__-_J___+_--_J_-_+--3-J__-+
| 1 | .1002 1.2 |.2201 | 2 |
o o Fomm————— S T T tmm et
| 2 |-.0322 |.2T |.2201 | 1 |
R tm——————— o ————— B S e — +
| 3 |-.101213}.212 |.2201 ] 2 |
T tmmm————— e o P ——— +
| 4 }.022012 |.2121 |.2201 o1 |
e T P o ———— Fom—m o —— Fmm— +
] 5 } 000013 }.21210 |.2201 | 0 |
T Frmm———— ettt DL LD LD LT e +
| 6 ].00013 |.212100 |.2201 | 0 |
D tmm tmmm e ittt Frmmm e +

- — - — Y — - Y W . — — - - S - G - - - - - W = . — e D - - ———

According to Table (3.2):
Q'=Q 6=(.212100)4

The information needed by the CHECK Unit at the j-th

step of the algorithm are nj,n j,qj le.

Table (3.3) is obtained by using the Algorithm DETECT DIVIDE

’ q.j,|leA and |P

and summarizes the operation of the CHECK Unit for this ex-

ample.

Since stz'. for j=1,2,...,6 then all the operations

]
have been correctly performed or a miss has occurred.
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et t————— p—————— Pr————— m————— -;- ------ o +
i X. X'. | Y. | v*. 2. z2': lz.=z2'.|
l-_f-__l__l_-_l--_l_-+__1___+--_1__l__1___+_-_1-_+_1___J+
I 1 I 2 [ 2 | o I o | 2 | 2 |check |
e ettt Y D e Fom———— tommm— +
| 2 | 2 | 1 | 1 I 1 | o | o | check |
e e o e to————— R o tmm————— +
] 3 | 2 | 2 | 1 . | | o | o | check |
T o m——— toem——— tm————— o D tom———— Fommm—— + :
4 1 2 |1 o 1 1 |1 1 1 o | 0 Icheck | {
tmm———— o ———— tom———— tom———-— Y o ———— tm————— S T e +
| s | o | o | 1 | 1 | o | o |check |
tomm———— tm————e Fom——— t—————— tmm————— o ———— e tmm———— +
| e | 1 | o | 1 | 1 | o i o |check |
Fm————— tomm——— o ——— Fm————e Fmm———— tm————— to————— D +
1
Table (3.3)- Results Obtained by the CHECK Unit.

Now assume that at step 3 of the 'MAIN DIVIDE' Algo-

rithm an error in the Multi-Input Redundant Adder causes the

partial remainder Py (=0.15298) to be incorrect. Assume this

*
wrong result (P3) is:

»
P3=0.15296

Continuing the algorithm "DETECT DIVIDE" from step 3 we

‘ get:

j=3

X3=|2+0|A=2

X 3=I1-2IA=2

Y3-|1+0|A=1

PR
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N

1] —
Y 38l1+0|A—1
z3=|2*(1-1)lA=o
z'3-|2*(1—2) IA=1

Since 23#2'3 this error will be detected by the CHECK

Unit.

When no error 1is detected by the CHECK unit, the

current quotient qj is delivered to the next on-line unit

along with its residue modulo A [notice that (qj mod A) is

not necessarily equal to q'j ]. These two constitute one of

the operands of the following on-line unit.
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3.1.2 AN Coded Operands

In the previous section we discussed the detection of
errors in an on~line divide unit when the dividend and the
divisor are residue coded. As was mentioned before, it is
possible to use AN coded operands for the purpose of error
detection and/or error correction. In this section we
present a summary of the proposed algorithms when AN coded

operands are used.

Again we denote the operands by N, D and Q for the
dividend, divisor and the quotient. Encoded operands are ob-
tained by simply multiplying each digit of the N, D and Q by
the check modulus A. Denote these encoded operands by N', D'
and Q'. The table of the next page shows the correspondence
between two sets of operands and the results. For the reason
which will be explained later, the digits of the dividend

(N) are multiplied by A2 instead of A (avi 73].
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"nh-hu- L e p——
L .
{
m -i m -
N= % n.r and N'= ¥ n'ir
i=1 i=1
m s m s
D= d.r ' and D'=3 4'.r *t
. i
i=1l i=1
o -i = -i
Q=2 qr and Q'= ¥ q',r
i=1 i=1
qJ.‘{-p,..,O,.o,p] and q'j‘{-Ap,so,O,-.,Ap}(3030)

,
nj<[-p )e++»1,0,1,...,0 1 and

. 2 L) _ 2 2 2 L]
.n y4-r% ..., -A%,0,A%, ... A% ) (3.31)
d-‘ - .,oco'I,O,I,oot' ' d

y«l-e p'l an
‘d j‘{-’Ap ,-.-,A,O,A,...,Ap} (3.32)

vy o=l vy =+l
x'>p>L17K (1rr ) ana ak*'>p'>atX (lrr )(3.33)
k205> -k and Ak 2 Q'y 2 -Ak (3.34)
such that:
r 2
L] .=A
n 3 ng
4d'j=Adj for ji=1,2,...,m
kq j=AQj (3.35)

The division algorithm which operates on encoded

operands 1is exactly same as "MAIN DIVIDE" Algorithm dis-

cussed in the previous section. Also the proof of the con-
vergence of the algorithm in this case is similar to what

was mentioned before. Following the same procedure we get:
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' p'
v M reAtn ! N o LI m
P m—r [N Q'D ] or Q —Er r -T)-r-

Now if we prove that

lp* |<AD (3.36)
The quotient Q'=§T to m digits of precision.
Q'= £ = A—2N- = AE = AQ (3 37)
D' AD D '

which is the correct result and shows the reason why we have

to multiply nj by A2 instead of A.

3.1.2.1 Selection of The Quotient Digits

One of the most important factors in the design of the
AN-coded division unit is the selection procedure. As was
mentioned before, selection is such that the correct quo-
tient is a multiple of the check modulus(A). With the help
of the basic recursion formula (3.12) and following the pro-
cedure given in [GOR 80] the bounds on partial remainder are

obtained:

8

2P’y _>_-kAD'j+A2(k k' )r 8

kAD'j-Az(k"+kk')r' (3.38)

By letting j=m in (3.38) we get:

AD'>|P' [>-AD"'
— m-—
Therefore, Eq. (3.36) is satisfied and Q' 1is indeed the
correct quotient up to m digits. Also following the pro-

cedure given in [GOR 80] we get the following set of selec-

tion equations:
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8+1

(i'+Ak)D‘j—A2(k #k')r ol TRt 2 (i'-RK)D'

]

~-8+1

+a2(x +xx')r (3.39) |

This condition can be graphically described by means of
a P'J.-D'j plot [ATK 68]. It consists of a family of curves

which are linear function of D'j with q'j as parameter rang-

ing from -Ap to +Ap in steps of A. The area between maximum
rP'j and the minimum rP'j will be denoted the q'j=i' region. £
A given value of D'j and rP'j will correspond to a point in

an i'- selection region. The quotient digit q'j is, there-

,

~r

AR S AP

fore, i' and is used in forming the next partial remainder.

Figure (3.5) is an example of a full P'j-D'j plot with r=2,

k=k'=k =1, A=3 and 8=4.
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el D}

Dj =3

R .||IJ.IJ|J..|||\ |||||| ¢
™ ?

[
{
0
i
FlmSS-AnEnmphofAP;-D;ﬂot
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3.1.2.2 Determining The Minimum Index Difference

The minimum allowable value of 8 can be determined by
requiring that the lower bound of a q'j=i' selection region
and the upper bound for the corresponding q'j=i'-A selection
regions intersect at the minimum value of D'. Therefore, by

using Eq. (3.39) we get:

],:'84'].i 2.kT-1 (D ]
2a(k +kk')

From Eq. (3.33) assuming m—»00 minimum value of D':.l is found

j)min (3.40)

to be:

' = lL-_]S_l-
(D j)min A r /

inserting this into Eq. (3.40) the worst case 8 is found:

2(k"+kk')
812+1°9r(2k-1)(1-k‘y (3.41)

By referring to [GOR 80] we find that this & is exactly the
same as that found for ordinary operands. Therefore the pro-

posed encoding does not change the minimum delay required.

— o —

r=2, k=k'=k =1 and A=3

Also we assume that D is normalized (not pseudonormal-

ized). Therefore:
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3 min'l'5

inserting this in (3.40) results in §>4. Assume: i

8=4

from Equation (3.30), (3.31) and (3.32) we get:

rq.j “ {30003} i

n'j < {9,0,9} §

P'j < {3,0,3}

OV S -

and also:

r 1

3> D' >3
1 3_>_ Q'j 2_-3
9> N' »-9

>

Plugging the given values in Eq. (3.39) the selection

regions are obtained:

3 q'.=i

2 (2er ) T a(it-3)p ye18w2”d

(i'+3)D'j-18*2‘
where i' <« {3,0, 3}

Figure (3.5) shows the selection regions obtained from
this set of inequalities. Now assume the dividend and the

divisor are:
N'=,990999

D'=.333303
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Following the "MAIN DIVIDE" algorithm shown in Section

3.1.1 of this thesis, Table (3.4) will result.

- - D TP D G D Tl D A = - — — — = D D = — — - - — - - —— -

D it o — o =t
31 e, | Q' | D', lq' ;1
A At A S R B A I
et e b o Fomr et
| 1 1.9909 1.3 1.33330 | 3 |
s S e tm——————— e -t
il 21.0 .30 1.333303 | 0 |
e it S o ettt 4
| 3 {.00099 |.300 1.333303 | 0 |
S Bt e et
| 4 1.0099 | .3003 |.333303 | 3 |
e o e e At 2
| 5 1.090909 |.30033 1.333303 | 3 |
et R e e g
| 6 1.000099 |.300330 1.333303 | 0 |
St ettt L LD LD Dl o et
| 7 1.00099 | - | - | - |
D tommmmmm et -+

According to this table:
Q'=Q 6=(300330)2

By looking at columns two and three of the above table,

it can be confirmed that all the digits of P'j

multiples of the check modulus (A=3). Therefore, the neces-

-1 and Q j are

sary condition for the correctness of the division process

is satisfied.

T T e R




3.2 Error-Coded On-Line Multiplication

3.2.1 Residue Coded Operands

Assume that the multiplicand (X) and the multiplier (Y)
are represented by m digits in a radix-r redundant number
system. Also assume that the residue of each digit with
respect to a constant A (A=2a-1) is attached to it and is
sent to the on-line multiplication unit. Therefore the coded

operands are:

(X,X')=(x1,x'l)(x2,x'2)...(xm,x'm)

(v, Y )=(y1.y'1) (yz.y' 2) .. -(ym.y‘m)

The product R is also represented by an m digit radix-r
redundant number. The residue of each product digit is also

attached to it while leaving the multiplication unit.

(Rc lRlA)=(plp |91|A)(sz |p2|A)-..(Pm' lpm'A)

Since X and Y are assumed to be redundant, Xy and Yy

belong to the following digit set:

xil Yi “ {-p.'l""i-lolll"'lp..} (3.42)

X' and Y' are not redundant, therefore:

x.i' Y'yo IpilA <« {0,1,....,(A-1)} (3.43)

Relation (3.43) is obtained from the definition of the resi-

due function.
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X and Y are assumed to be bounded by a positive con-

stant M such that:

M> X, Y >-M (3.44)

and similarly:
M'> X', Y' 20 (3.45)

The operands pass through a MAIN Unit which performs
the algorithm "MULT" given in Appendix C. The result R is

also in a redundant number system such that:

m -
R= > p.r
i=1 1

i
and P; belongs to the following digit set:

p; < {-pse...,1,0,1,.....p]) (3.46)

[ )
note that p and p may be different.

The residu> digits pass through a RESIDUE Multiplica~
tion Unit. The same algorithm (MULT) operates on them, that
is, they are multiplied in an on~line mode. The product of

the residues will be designated by R' and is defined as:

m
R'= & plirc
i=}

~i
and p'i belongs to the following set:

p'y « {-p's....T,0,1,...,0"} (3.47)

note that even though:
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(] = [] ;
X'y lxilA and y i=|yi|A |

, .
but p', may not be equal to lpi‘A' j

Proof of convergence of the algorithm MULT for the MAIN

and RESIDUE operands is the same and is given in Appendix C.

3.2.1.1 The Error Detection Algorithm

The purpose of this section is to develop an algorithm

that can detect an error at each step of the on-line multi-

plication unit. This algorithm will be run after generation

of P; and p'i and will determine whether these product di-

gits are legal or not. }
!
L To derive this algorithm, from Eq. (C.8) in Appendix C, :
we have:
-3 f
r "P,=X_.Y.~R. 3.48
s B s B B0 (3.48) |
Following a similar procedure as that given in Appendix

C, for the RESIDUE Unit we get: a

r'"p =X’ .¥y' .-R'

5 IR I T b ¢ (3.49) ;

X'., Y'., Rj-l and R j-1 are defined below:

h X., . .
where j YJ j j ;
j . j :
xj- * x,r* and Y.= % y;r 1
i=1 i=1
X', = % x'r'™d and vy .=% y'.r"i
Yym d I m” 4
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& R j:l -i a Rl j:l ] l-i ;"
i 1= L p.r an . 1= p'.r 1
Taking the residues of Xj, X'j, Yj and Y'j with respect to A
we get:
I 3 . |
IX 1= & x".lel; "]
IR ji=1 1A
I 3 |
X' o=l & x' let |27
IA im0 1 A a }
. s .
if we assume lrlA—lr IA then: ﬂ
and similarly:
Y5 a=1Y 51, i
Rearranging Equations (3.48) and (3.49) we obtain: g

-3
r “P.+R.
J

0-j [ 0 [] .
r P' . +R'. =X'_.Y'.
J i-1

Taking the residues of both sides with respect to A:

and
|

Therefore:

-3 =| [

Ir'-JlP'-l

=X.Y.
j-1 JYJ

Rl t

| *|y.|

=| ', * L I
|Ix JIA Y J'AlA

T e TS A v T 4007 gebve

x|y’ .|

b 2l xe |
Ix A J A|A

3latIR" 5oy laja= 1% 4]
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I -3 | _I =3 ’ ' ! I

This is the relation that we check at each step of the

multiplication algorithm for correctness of the MAIN and

RESIDUE Units. To simplify the checking process we assume:

|r|A=Ir'IA=1 (3.51)

Therefore, (3.50) reduces to:

Bie L+ir,_ L b=lier 1 +ir! 3.52
1P5lar Ry a1 5 Iar IR 5 (3.52)

The algorithm of the next page 1is run by the CHECK
Unit. The inputs of this unit are (Pj, pj—l) from the MAIN

and (P'j, p'j_l) from the RESIDUE Units.
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Algorithm "DETECT MULT" H

Step 1 [Initialization]:

R_1=0, po=0

R 1=0, P 0=0 P
For ji=1,2,....,m+l Do:

Step 2 [Input Digits]:

Ry_1=IRy_o*Py 1 1a £

R'._;=IR", |

j j-2"P 5.1 'a

P. 4 p'. ;
jane Ty {
step 3 [Check for Error]: ¥

z.=llp.
| Jl

I
J A+Rj-1|A

z'.=llp .l +r'. .|
J l| J'A j-1]A

If (Zj#Z'j) E=1, GOTO ERROR SUB

Step 4 [End Dol

W

S A 7
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3.2.1.2 Radix of the RESIDUE Unit

The bounds on the radix of the RESIDUE Multiplication
Unit (r') is similar to that derived for the RESIDUE Divi-

sion Unit. For the corresponding formulas see Section

(3.1.1.3).

3.2.1.3 3ounds On Operands

According to (3.44) and (3.45) we have:
M> X, Y >-M
M> X', Y' >0
Since the operands of the MAIN Unit are assumed to be

redundant, from Eq. (C.22) in Appendix C we have:

2k -1
M< =

The case of non-redundant operand multiplication has

not been addressed in Appendix C of this thesis. But, for

this case with a similar derivation the following equation

has been obtained:

o 1

Mik-f (3.54)
Note:

After adjusting the operands of the MAIN Unit, if

X' and Y' are still out of bounds, multiples of the check
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constant (A) can be added to or subtracted from the digits

of X' and Y' without changing the results.

The following is a numerical example of the error
detection process when residue-coded operands are used:

Assume:

r=10, p=5, e =9
r'=4, p'=2
A=3

From (3.42), (3.46), (3.43) and (3.47) we get:

4

X5 y; ¢ {9,8,...,1,0,1,...,8,9}

p. « {5,4,...,1,0,1,...,4,5}

x'., y'i < {0,1,2}

p'. <« {2,1,0,1,2}

Therefore:

- v V2
=3 k =1 and k =3

From (3.53) and (3.54) we get:

M<0.028 and M'<0.167
Assume M=0.01 and M'=0.167. The operands and their residues

are assumed to be:
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E

(x,X')=.(0,0)(0,0)(9,0)(4,2)(6,0)(8,1)(9,0)

(Y,¥')=.(0,0)(0,0)(9,0)(7,1)(2,1)(9,0)(6,0)

Using Eq. (C.21) in Appendix C, the following P-P plot
for the selection of the product digits of the MAIN Unit

will be obtained.

66




D.-“

il . O ida

- e

-3.48
-4.46
-5.46

2
j

Oy

-1

T 5.54

P.

Figure 3.8 — P-P Plot for the MAIN Unit
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Using the selection diagram shown in Figufe (3.6) and
the Algorithm “MULT" given in Appendix C, Table (3.5) is ob-

tained for the operation of the MAIN Unit.

it T S e R ettt ==+
I3 1 X | Y. | P. | psl
| | ] | J | ] | 3
e i e e e ettt R ettt
i11.0 |.0 |.0 | o |
e e e L L et
| 2 1.0 .0 .0 | o |
et e Fomm e e et o=t
| 3 }.009 | .009 |-.081 | o |
s St TR P e i +-——t
| 4 |.0092 | .0097 |-.7138 | 1 |
St e i P e ==t
| 5 1.009%6 | .00972 12.79488 | 3 1
R e et +--=+
| 6 |.009468 |.009729 |-1.906772 | 2 |
D e o e ===t
| 7 1.0094689 |.0097296 |.8055636 | 1 |
Fommmp e o e e ittt -t

Table (3.5)- Results Obtained by the MAIN Unit (EX. 3.2.1.4)

Pg=P,-p,=-0.1944364

R=0.0001321

Therefore:

)
|
‘4




Figure (3.7) shows the selection digram of the RESIDUE
Unit. Table (3.6) shows the results obtained by the RESIDUE

Unit.

From this table we get:

P'8=P'7-p'7=(0.1211000)4

Therefore:

R'=.0000001

and
X'*Y'=0.00000011211000

Table (3.7) is obtained by using the Algorithm "“DETECT
MULT" and summarizes the operation of the CHECK Unit for

this example.

Since zj=z'j for j=1,2,...,m, m+l then all the opera-
tions have been correct or an undetectable error has oc-

curred.

Now assume at step 8 of the RESIDUE MULT Algorithm an

error changes the sign of the eighth partial product
— *

[P'83(0.1211000)4]. The incorrect partial product (P'8) will

be:

* —_
P 88(0.1211000)4

Continuing "DETECT MULT" from step 8 we get:
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Figure 3.7 - P-P Plot for the RESIDUE Unit
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e e et S et
l11].0 .0 .0 } o}
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| 5 1.00020 |.00011 [.0022 i ol

e e a Sttt Fmm——————— et ;
| 6 1.000201 |.000110 |.02211 | O |
et DR Fmm—m———— Fommmemee -t
| 7 1.0002010/.0001100].2211 11
e o e T ==t

Table (3.6)- Results Obtained by the RESIDUE Unit .

j=8

R,=10+1],=1

R'2=10+1],=1

ZB=|2+1|A=O

|*l
Z'g= 1+1IA-2
*
Since 28#2'8 this error will be detected by the CHECK

Unit.

If no error is detected by the CHECK Unit, the current
product digit (pj) is delivered to the next on-line unit

along with its residue modulo A. These two constitute nne of

71




= (= A

e

+—— +—+—+—+— +
[ T | 1 ) [} 1
- I XX 2t M|
1 10110
1 101 @1 Ot @1
[ T - < - R ¥ <
[ 10OtV o01 U1
+——Ft—+—4+—+—+
1 [} ] 1 ] |
[ B | 1 1 [ |
| - 1tolot1olaol
1 N 1 |} 1 t |
| 1 | 1 I |
d——F—F—+—+—+
! 1 ) ! | |
[} 1 1 ! | 1
I m» Jolololal
1 [} 1 ] ] 1
] .
+——+—F+—+—+—+
[ I | 1 ] 1 1
] | } ] ! | [}
I m 1OoO1O1tOoO 1O
| = I 1 I [} 1
1 I 1 I ] [}
d——F—+—+—+—+
[} ! ] | ! [}
Lo 0t
] 1 1101010
[ T I B i B
| X ] ] I ] |
F——t—t—+—+—+
] 1 ] 1 | 1
1P Al NTml
| 1 ] 1 I 1
d—— b=t —+—+—+

Fe)
-
a
o]
—t—t—t—t 3
VR I VAN RV M
viv1viul &
[ VI S N I VI B O |
S1TETLE1E1 o
0oL o0oror o P
—+—+—4+—+ 5
RN
>
~lololol
AR
—+—+—+—4+.
| [} ] ] o
[ I D =
~lololol 3
) i { ! o
biif g
11 i 1 ©
T,
c1o1o0lml
] [} ] 1 -
] ! 1 | =
—d—4+—+—4+ 3
NARE
NITNIO Il %
] t ] ] !
{ y "
“t17 171 =
wleletol o
—+—+—+—+
Q
-
)
o
&

.

Do kb s s

the operands of the following on-line unit.
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3.2.2 AN Coded Operands

the purpose of this section is to present AN Codes in
the process of on-line multiplication. As was mentioned ear-
lier, the operands and the results are shown with m digits
in a radix-r redundant number system. They are denoted by
X,Y and R for the multiplicand, multiplier and the product
respectively. The encoded operands are obtained by just
multiplying each digit of the operands by the check modulus
(A). Table of the next page shows the correspondence between
the two sets of operands and the results. Note that since
each digit of the multiplicand and the multiplier is a mul-
tiple of A, then the product digits will be multiples of A2
and not A. Therefore, at the end of each step each product
digit should be dividend by A to get the correctly encoded
product. If we assume that A is a low-cost modulus, this

operation will be trivial [AVI 73].




r-m - Saae e S — :
i - BIRNMERSRCRRI S L
m -i m _
X= ¥ x;r and X'= & x'yr
i=1 i=1
m -4 m -i
Y= 2 y;r and Y'= 2 y';r
i=1 i=1
m _s m s
R= 2 p.r 1 ana R'= 2 p'.r l
i=1 % i=1" 1
r
x, < {-¢'+...,1,0,1,...,0'} and
k ] - ] EY '
: \x i « (-Ap's...,A, 0,7, ...,80") (3.55)
[ -
y; < {-e'++..,1,0,1,...,0'} and
‘Y i “ [-Ap Ooo-'A'O,A,..u,AP} (3.56)
4
p; < {-p++..,1,0,1,...,0} and
' 2 a2 2 2
.p i‘ {-A P..o-' A 'O'A ,l.Q'A P} (3.57)
-M< X, Y <M and -AM< X',Y' <AM (3.58)
and the relation between the corresponding digits of these
two sets of operands and the results are:
4
X =Axi
y'.=Ay:.L i=l,....,m
' 2
p'=A"p; (3.59)
\
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The algorithm that operates on encoded operands is the

algorithm "“MULT" shown in Appendix C. The proof of the con-
vergence of the algorithm to the correct value of the pro-
duct is similar to that shown for the algorithm "MULT".

Similar to Eq. (C.10) we get:
teyiyi o~ [
R'=X'Y'-r "(P' -p' ) (3.60)

By devising a product digit selection procedure SELECT,

in step 4 of the algorithm "MULT" such that:

2
[} - [}
Ip P m|_<_A k (3.61)
R'=X'*Y' can be computed to m digit precision. The least
significant half of the product is available as the redun-

dant output of the adder after iteration m+l, i.e.,

P m+1=P'm-p o (3.62)

3.2.2.1 Sselection of The Product Digits

Selection of the correct product digit is of great im-
portance in the design of the AN-~coded units. Looking back
into Eq. (3.57) we deduce that the correct product digit is
always a multiple of the square of the check modulus.
Derivation of the bounds on the encoded partial product fol-
lows similar path as that explained in Appendix C. These

bounds are:




A%(rk-2mx')> P 2% (-rke2Mk’) (3.62)
selection equations are also represented by a P'-P' plot. It
consists of a family of curves which are linear function of
P'j-l with p'j as parameter ranging from -Azp to +Azp in
step of A2. The area between maximum P'j and minimum P'j
will be denoted by the p'j=i' region. A given value of
Plj-l and P'j will correspond to a point in an i' selection
region. The product digit p'j is, therefore, i' and is used

in forming the next partial product. The following equation

shows these regions:

2 P'y=i

ireaf-amea?> (erg) I sit-atkeamkea®  (3.63)
when j=m in (3.63):
AZx-2Mk 'A2 2 2

2 P -p', 2-ATk+2Mk'A

2

and since MKk'A“>0 then:

2 Vv a_p2
A%k> ' -p'  >-A%k

or
L] - 1]
lp* _-p' I’

Therefore the relation (3.61) is satisfied by the a.ove
selection equations. This proves that R' is indeed the

correct product up to m digits.




Allowable values of M are obtained by requiring that

2

the upper bound of the p'j=i'-A selection region be always

greater than the lower bound of the p'j=i' region, i.e.

U > L.,
i._AZ 1

inserting the values from Eq. (3.63) we get:

Mkl (3.64)

This is exactly the same bound we obtained in Appendix
C (Eq. C.22). Therefore, applying AN-Codes to the operands

does not change the allowable range.

r=2, k=k'=l and A=3

applying Eq. (3.64) we get Mi%.

assume M=%. Equations (3.55) to (3.58) result in:

[ . . -
x';o ¥ ¢ (3,0,3])

p'i “ {6,0,9}

3, w1 yr <3
XY g

inserting the given values into Eq. (3.63) we get:

s 2 ' -»__9_ i
1 +2l P j _>_1 p) 1 < {glolg}

Pigure (3.8) depicts this set of equations.
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As an example assume that the multiplicand and the mul-

tiplier are:

X'=.0033033303

Y'=.0030303330

Following the steps of the algorithm “MULT" in Appendix

C, Table (3.8) will result.

- — ——— ——— ——— —— - ——— T — Y — - — T —— T —— i — T ——— . ——

e e e ———— R +-——+
I3 | X', | Y'. I P'. fp' .|
P 3 | J | J I3
e R e e =t
1 1.0 |.0 |.0 | o |
e el e i R o ot
1 2 1.0 1.0 |.0 [ o |
N R ettt et T el +~=—+
| 3 }1.003 |.003 |.009 | o !
et SRR T T TS Fomm————————— 4t
| 4 |.0033 | .0030 | .009 | o |
e e R bt et
| 5 1.00330 | .00303 ] .0099 1 o |
et e e ettt L S e
| 6 1.003303 | .003030 | .09999 I o |
e b ————— o ot
| 7 1.0033033 | .0030303 | .9900099 | 9 |
Sttt SRR e B ettt et
| 8 1.00330333 |.00303033 | .09009099 I o |
e et e +m——t
| 9 1.003303330 1.003030333 [.90909009 I 9 |
T Pommmm———————— P $e——t
110 |.0033033303 (.0030303330 |.900909999 | 9 |
D et trmmm— o ===t

From this table we get:
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=P =(.o9909ooo9o)2

P'11"""107P 10

and therefore:
x'*Y'=(.oooooo§o9§o9909ooo9o)2

The necessary condition for correctness of the opera-
tion is satisfied because all the digits of the product and

partial product are multiples of the check modulus (A=3).
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3.3 Error-Coded On-line Addition

3.3.1 Residue-Coded Operands

Assume that the summands A and B are represented by m
digits in a redundant number representation system (Eqs. D.1
and D.2). The residue encoded summands are (A, A') and

(B, B') such that:

(a, A')=.(al,a'l)(az,a'z)...(am,a'm)

(BI B )=‘(b1'b.1)(b2'b.2)--o(bm,b'm)
The relation between A and A' (B and B') is:

i=lajly

b=, 1,

a, and bi are assumed to belong to the following digit set:

a; b, < {-p' ,t..,T,O,l,...,p"} (r—l)zp"lrlz (3.65)

The following relation is obtained directly from the

definition of residue function.

a'i.b'i <« {0,1,...,(A-1)} (3.66)

The sum R is shown by m+l digits also in a radix-r
redundant number system (Eg. D.3). the residue encoded sum

is:




1)

(R’|R|A)=(SO'ISO|A) . (sl'lsllk)....(sm'lsmA

S5 is assumed to belong to the following set:

s; < {~p¢...,T,0,1,...,0} (r-1)2 p 2r/2 (3.67)

A' and B' in going through the RESIDUE Unit generate a resi-

due sum which is represented by R' such that:

m
R'= % s',r
i=0 1

-1

s'i is assumed to belong to the following digit set:

s'; <« (-p',...,T,0,1,...,0'} (r'-1)2 p' 2r'/2 (3.68)

The algorithm run by the MAIN and RESIDUE Units is the
algorithm "ADD" presented in Appendix D. Proof of the con-

vergence of this algorithm to the correct value of the sum

is given in the same appendix.

3.3.1.1 The Error Detection Algorithm

In this section the algorithm which should be run by
the CHECK Unit will be derived. CHECK Unit starts the opera-
tion after generation of s; and s'i by the MAIN and RESIDUE
Units, respectively. It examines the necessary condition for
fault free operation of the MAIN and RESIDUE Units. Unless
this necessary condition is satisfied, the CHECK Unit stops

the operation and sets an error flag.




IR YT

To derive such an algorithm, from equation (D.9) of Ap-

pendix D we get:

j . j=2 . —isl
 (a,+b.)r Y =L s, r~t + r~I"p,
j=1 1+ 1 i=0 i j (3.69)

For the RESIDUE Unit we get a similar expression:

bt ' [} = = bl ' |-i l"j+1 '
z (a'.+b'.)r ':Os i + r P 5 (3.70)

Taking the residues of (3.69) and (3.70) we obtain %

(3.71) and (3.72).

I3 . I 13- . .
| = (a'.+b' ) 4 = (I 'Z s.e”if + 73 p, ) |
li=t 1Y ja M=ot A IR a (3.71)
and
| 3 | |13-2 N . [
|5 (a' g+ e = IS st e e T e g
|i=1 la  |li=0 ia 3 ¥a .
Assuming |r|A=Ir'|A , from (3.71) and (3.72) we get:
I]4§~2 . .
'S s, x” + 7 yp 1 =
| 1i=0 |a 32 A
| 15-2 .| . {
I~ [} -1 'J"’l '
b3 . + P'.
e A LN (3.72)

This is the relation that CHECK Unit verifies at the

end of each step. To further simplify the detection process

we assume |r|A=|r'|A=1. As a result, (3.73) reduces to:
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H2el + 1ol = 11Eer ] + 1200
2 8. + P, - r s’ + |P®
|1i=0 *|a IR A [limo A IA A (3.74)

Defining the following dummy variables:

:;i:_z |

X. = 2. 8

2 |j=0 YA
| j-2 |

X' = | £ s',|

Eq. (3.74) becomes:

Iy
|xj_2 X (3.75)

| = '
+|pj|AlA l j_2+Ip jl

|
A|A
The algorithm "DETECT ADD" of the next page is run by

the CHECK Unit and verifies Eq. (3.75).




Algorithm "DETECT ADD"

Step 1 [Initialization]:

X_p=0, X'_,=0

2

FOI‘ j=1,2,.-..,m+2 DO:

Step 2 [Input Digits]:

Xj-2=1X5 3+s5 51a

X IX

'j-2= X yoa*st 500

[ }
leIA and [P le

Step 3 [Check for Error]:

.zj_zslxj_2+lple|A

+ip* .|

L]
Ix j=-2 j AIA

2"y o=
If (25, # 2°5.,)

THEN E=1, GOTO ERROR SUB

Step 4 [End Dol
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residue-

of the

In what follows a numerical example

coded addition will be given.
Assume:

r=10, p=p =9

r'=4, p'=3
A=3
Therefore:
[ )
k=k'=k =]

From Eqs. (3.65), (3.66), (3.67) and (3.68) we have:

ai,bi,si “ {g,g,..-,r,o,l,...,a,g}

a'i,b'i < [0,1,2}

s' i “ {—3-0-2-0-1-101 1' 2, 3}

The encoded summands (A,A') and (B,B') are assumed to

be:
(A,A")=.(9,0)(2,2)(4,1)(7,1)(0,0)(5,2)
(B,B')=.(8,2)(4,1)(3,0)(5,2)(6,0)(7,1)

Following the algorithm "“ADD" in Appendix D, Table
(3.9) will be obtained. This table summarizes the results
obtained by the MAIN Addition Unit during various steps of

the ADD algorithm. According to this table:




D T o ——— o ———— +
I 51 P. | s._ | R, |
I R S R e R R B
I o ——— T +
11 1.7 | 2 |2 |
T L Lt +
| 2 | -2.4 | 2 1.8 |
el e D it +
t 31 -3.3 | 3 11.77 |
S it Fommmm e +
| 4 | -1.8 | 2 [1.768 |
et ST tmmm T B +
I 51 2.6 | 3 11.7683 |
tometom e Fmm—— L e T +
| 6 | -2.8 | 3 11.76827 |
e N T s e +
i 721 2.0 | 2 11.7682721|
T e e P D +

Table (3.9)- Results Obtained by the MAIN Unit (EX. 3.3.1.2)

R=R7=1.768272

Table (3.10) summarizes the results obtained by the

RESIDUE Addition Unit. From this table we get:
R'=R 7=(0.312111)4=(.231303)4

The information needed by the CHECK Unit are: 42 '

s and IP'jI Table (3.11) is obtained by this

unit using the algorithm "DETECT ADD" and summarizes the

operation of the CHECK Unit for this example.

This table indicates that the necessary condition for

correctness of the operation is satisfied for every step of
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iR S

et e ————— tomm————— +
I 31 P, | s', | R'. |
I 7 tEE b
P e o ———— +
11 o0.2 | 0 .0 I
L T S T P ——— + ‘
| 21 0.23 | 3 |.3 |
T R Bt S L P e T + h
: | 31 -0.3 | T |.23 |
1 e Pmmmm———— o ——— + ;
| 41 1.3 | 2 |.232 | k
e SR tmmm e it +
| 51 -1.0 | 1 |.2313 |
T o o ——— +
|l 61 0.3 | 1 |.23131 |
tormpm e —— o e +
1 71 -1.0 | 1 1.231303 |
Pmmmbm—m e — e N Fmmm +

the ADD algorithm (zj_2=z j-2 for j=1,..,8).

In order to demonstrate the error detection capability §

of the proposed scheme, assume due to an error in the
multi-input adder of the MAIN Unit, the sign bit of PG has ;

been inverted. Such that:
p6="2-8 => IPGlA=2

* ®
P,=2.8 => |96| 1

6 A™
Following the "DETECT ADD" algorithm from step 3Jj=6 we
get:

=6
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3.3.2 AN Coded Operands

In this section the imposition of AN codes on on-line
addition will be considered. On-line subtraction can be re-
placed by addition by just flipping the signs of the sub-
trahend digits. As before, the encoded summands (A' and B')
are obtained by multiplying each of their digits by the

check modulus.

m -3 m -1
A'= ¥ (Aai)r = a'ir

i=1 i=1l

m _ m _
B'=3 (Ab.)r = & b‘ir 1

i= i=l

m s m s
R'= % (Asi)r 1= = s‘ir 1

i=0 i=0

¢« b'. and s'i belong to the following digit sets:

i i
a', « {-ap',...,A,0,A,...,R0"} (3.76)
b, 4 (-Ap ,....K,0,A,...,Rp ) (3.77)
s', <« (-ap,...,R,0,A,...,Ap] (3.78)

It is clear that:

Ak'> A' >-Ak’

) L

Ak > B' >-Ak

A(K'+k )> R' >=A(k'+k )
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TIIRe,

Algorithm "ADD", shown in Appendix D, is imposed on the
encoded operands A' and B'. With a similar derivation the

following relation will be obtaned:

R'=(A'+B') - r™® (P 1-8" ) (3.79)

The sum digit selection procedure in step 4 of the al-

gorithm "ADD" should be such that the following relation is

satisfied:

IP* 178 ol <AK (3.80)
Only in that case R' represents the sum of A' and B' to m

digits of precision.

3.3.2.1 Selection of The Sum Digits

Sum digits should be selected in such a way that they
are always multiples of the check modulus (A). Using the
basic recursion formula (Eq. D.8 in Appendix D) and follow-
ing a similar procedure given in that appendix, the bounds

on the correct partial sum will be obtained.

a'.+b'. a'.+b'.,

rXA = FE=Ty2 Py 27TRA - FrETy (3.81)

The selection region i', is a region in which s j-1=i

is a correct sum digit. This area is represented by the fol-

lowing inequality.
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a'.+b' . s', .,=i' a'.+b'.

i'+ka -—r-(Ji.q-)l_)_ (P.j) -1 _>_i'-'kA -_?'&'Tl-)l (3.82)

b In deriving this relation we have followed a similar path

shown in Appendix D for deriving Eq. (D.23).

In order to have overlaps between regions s'j_1=i' and
s'j_1=i'+A the following inequality should hold:
Ui'lpi'+A for all values of i’
1

; The only requirement to satisfy this relation is k>x.

Therefore, if the sum (R') is in a redundant number

representaion system, there are always overlaps between the

adjacent regions even if the summands are not redundant.

— o — —

r=10, k=k'=k =1, m=8 and A=7

From Equations (3.76), (3.77) and (3.78) we get:

i’ b'i, s'i <« {63,56,...,7,0,7,...,56,63]}

a

As a numerical example assume the summands (A', B') are:

A'=.(63)(56)(63)(42)(35)(14)(7)(63)

B'=.(63)(63)(63)(56)(42)(63)(14)(7)

Applying the "ADD" algorithm on these sets of operands,

we obtain Table (3.12). From this table the value of sum

{
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et P +
I35 | p' | s', |
I 3 -1
e e ettt P +
111 (7). (56)| 14 |
D et sttt T +
I 21 (0). (21)| 0 |
e ittt +
| 3 1(28). (56)| 35 |
s T e T TP +
| 4 | (0). (42)| 7 |
T e e +
I 5 |(l4).(63)| 21 I
e T e R +
I 6 1(14).(7) | 14 |
S e i S +
| 71 (0).(63)] 7 |
e e +
] 8 1 (0).(0) | 0 |
e T T T + ﬁ
91 (0).(0) | 0 | .
e e S +

R'=(14).(0)(35)(7)(21)(14)(7)(0)(0)

the necessary condition for the correctness of the
operation is satisfied because all the digits of the sum and

partial sum are multiples of the check constant (A=7).
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CHAPTER 4

IMPLEMENTATION CONSIDERATIONS

In this chapter a hardware organization of the proposed
error-coded on-line units will be presented. In Chapter 3 we
proposed two methods for detection and/or correction of er-
rors in an on-line unit, These methods were: 1) use of a
residue unit along with the residue coded operands, 2) use
of AN coded operands along with one (MAIN) unit and the
corresponding CHECK unit. It is obvious that in the first
case a CHECK unit is also needed to compare the results of

the MAIN and RESIDUE processors.

The operation of each of these units has already Dbeen
explained in Chapter 3 (see the corresponding block di-
agrams). It is the purpose of the current chapter to consid-
er the hardware realization of each of these units. At the
end, using this realization an estimate of the gate and
memory requirements of the error-coded on-line unit will be
given. In order to do this, we start with the operation of
a residue-coded divide unit. The extension of this work to
other basic operations (addition/subtraction and multiplica-
tion) is straight forward and will not be considered in this

thesis.
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4.1 Design of The Error-Coded Division Unit

As we mentioned in previous chapters, a residue-coded
on-line division unit consists of the following elements:
1. A Radix r (=2%) MAIN unit
2. A Radix r' (=2') RESIDUE Unit

3. A CHECK Unit

In what follows the hardware design of each of these
components will be considered and an estimate of the cost of

each unit will be given.

4.1.1 Design of The Residue-Coded MAIN Unit

The design of the MAIN Unit when no error-detection
scheme is used has been given in the Appendix A. In this
section we modify this design to make the same unit suitable

for the case when residue coded operands are used.

From the algorithm "DETECT DIVIDE" in Chapter 3 it is

clear that the residue of the partial remainders Pj and P'j

are needed by the CHECK Unit at every step of the on-line
division algorithm. These residues should be obtained by
Processing Elements inside the MAIN and the RESIDUE Units in
such a way that the modularity of the units is preserved.
Having this in mind, the following scheme for determination

, .
of lelA and |P jIA is proposed.
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Calculation of The Residues of Partial Remainders

From the description of the hardware design of the Pro-~
cessing Elements (PE's), we know that partial remainders are
represented by m digits. Each PE contains one digit (radix
2k) of the interim partial remainder (w(J)) and the

corresponding transfer function (T(J)) such that:

- (3) -i_ (3) ,p(3)
®3 151" L[ T3 ] (4.1)

and similarly:

m m
= (i) _,-i [ (3) (3) i
P'.= 2 p' r' T= 3 qw' T +T r'
s P i=1 i i (4.2)
Therefore:
(3) « ~i
lelA=li>=..lei lA Ir lA}A
== L ONE TSI PRy ISR Ui |
[j=a! & AL ‘ala Ala (4.3)
Assuming |rlA=|r'|A=1 we get: ]
Iml . .
=l = (3) (3), |
|Pj|A-=i:1|'wi la+iT; 'AIA{A
| m oy
= & r{3)
li=1 * |a (4.4)
where jo) is defined as:
(31_1,,(3) (), |
R, I'wi Iz,\+|1'i |A|A (4.5)
Using Egq. (A.9) in Appendix-A we get:




= ——A . .. o —— o

(3) (5 |

|
(3) ] () A(3) P
Ry bwi vl Tty latit; la

| (4.6)

Ia
R§J)'s are computed by Processing Elements. These
residue digits [a bits each] are sent to the CHECK Unit.
This unit adds these residues and finds the residue of the
result in order to obtain lelA according to Eq. (4.4).

PEi obtains Rij) by adding the residues of the values
in RW, TA, TPl and TP2 registers and finding the residue of
the result (Eq. 4.6). These values are obtained as described

next.

(3)

Computation of w,-":

Since wij) is a radix-r Sign and Magnitude digit (k+l1
bits), its residue is obtained simply by a two-stage ROM

device with the capacity of:

M, =a[25+27*1] bits (4.7)
Py (3) P, (3)
Computation of ti and ti :

These two transfer functions have a similar form and

consist of EL%ELl magnitude bits and one sign bit. They are

.in the following form:




| & o o L4 > (K-1) BITS

b e e e o °
. ° e o o o ° )
o e e o e o .
SIGN BIT
~—— o — e
(K-1) BITS
. p, (i) P, (3)
The residues of t; and ts are obtained by sim-

ply finding the residue of each row and adding them togeth-
er. This scheme is shown in Figure (4.1) for A=3. There-

fore, the total ROM needed for this process is:

M 20l a2, 4ok lyg spaklygk-2

rp1 ™ Mppo=l

2
Foeee 4285 X g 4 qr2® HL

This expression reduces to:

2 .
- k+l_ o+l k—x x"+1
Mppy =Mppy=x(2 2 27T+ 2 ] (4.8)
The time required for this process is:
top1=tppr=3ty (4.9)

where tM is the read time of a ROM device.
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Computation of t?(J):

tg(J) is the transfer function out of the Multi-Input

Adder (MIAD) and is represented by (2k+l) redundant binary .
digits ( <{T,0,1} ).

A(3)

In order to obtain the residue of ty with respect to

TNV

A, (2k+l1) digits of it are grouped into groups of 2 digits

i each. The residue of all groups are obtained simultaneously.

g

the results are grouped again and this process continues un-
A(3)
i

in Figure (4.2) for k=8 and A=3.

til the residue of t is obtained. This scheme is shown

Number of levels required is:

L=[logz(2k+1)] (4.10)

Therefore, the time required for this process (tTA) is:

tTA=LtM=Ilogz(2k+1)]tM (4.11)

The memory required (MTA) is:

4 2 (K 2x 42

8
This function can be approximated by:

k.4 .k 2x
Mpa=k2 *2 +a[§2 +zz }

2xyguk=2
Mpa=32k +8ak +277*a*=; (4.12)

According to Eg. (4.6) these residues should be added
to obtain Rij) ingide the i-th Processing Element. The fol-
lowing organization is proposed to perform this modular ad-

dition.

!4
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The memory required for this process (MADD) is:
2x 2ax
* =
Ma pp™X [3*2])=3x 2 (4.13)
Therefore, the total ROM required to obtain Rij) from

wij) and Tﬁj) according to Equations (4.7), (4.8), (4.12)

and (4.13) is:

2
M= 2%[5-2"*1] v [8K+2* +2_pxtly

+x 22X 5‘;—4 +32k  (bits) for k> atl  (4.14)

The time required for this process is:

tr=[MAX(3'[1°92(2k+1)1)+2]tM (4.15)




1

4.1.2 Design of The RESIDUE Unit %
i

Since the RESIDUE and the MAIN Units are similar, from w

Eq. (A.30) in Appendix-A we get:

Gpg . =64k’ 24157k +123 (4.16)
and also the pin requirements of a Processing Element of the

RESIDUE Unit is:
PPE.=13k +9

The amount of memory required to compute R'gj) from

(3)

w'ij) and T' similar to Eq. (4.14) is:

i
k' -ax+1 a2+2 x+l
Mg =ax 27 [5-2 ] +x [8k'+2 =27 7]
+x 22 "—2‘*4- +32k' (bits) for k'> a+l (4.18)

and also the time is similar to Eq. (4.15).

4.1.3 Design of The CHECK Unit

The CHECK Unit receives its inputs from the MAIN and
RESIDUE Units. These inputs include:
1. The corresponding digit of the dividend and its residue

1

(ni and n i)
2. The corresponding digit of the divisor and its residue
(di and 4 i)
3. Output digits of the MAIN and RESIDUE Units (qi and q‘i)

4. jo) and R'ij) from the corresponding PE's of the MAIN




and RESIDUE Units.

These inputs are shown in Figure (4.3).

Rl 2

FROM MAIN UNIT .

nﬁ) 2;. 1

"f ) CHECK UNIT - E

R;(l) e

FROM RESIDUE UNIT 2
‘G 2,

LR

*h 2 4 2

n; n; d; d;

e —

INPUT DIGITS

Figure (4.3)- Inputs to The CHECK Unit

s — —— — —— ————— " ———— —————— " —" T - — — —— T — _ —— = — = ———

The numbers shown on the block diagram belong to the case

where r=10, r'=4 and A=3. In this case:
Total Number of Inputs =4m +18 (bits)

Inside the CHECK Unit Rij)'s are added to generate

leIA and R'gj)'s are added to generate IP'le. Therefore,
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by looking at the algorithm run by the CHECK Unit (Algorithm
"DETECT DIVIDE" in Chapter 3) the block diagram of this unit

will be obtained as shown in Figure (4.4).

In what follows the hardware implementation of each of

the components of the CHECK Unit will be considered.

Block No. 1

This block adds n'j+8 [x bits] to Yj_lfm bits] and ob-

tains the residue of the result. Therefore:

{

time required =t,=ty

ROM needed =22%*x (bits)

-3

Blocks No. 2 and

These two blocks are similar and their hardware re-

quirements are:
t2=t4=2tM
My=M,=[2""1+2°%]a (bits)
Block No. 3

This block adds q'j (k'+1) to X'j_1 [x bits] and ob-

tains the residue of the result.
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r ’ . .
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MOD | SUB SUB MOD
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MULT 71 |8 MULT
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z; g ** g Z,
COMPARE 1

¥,

Figure 4.4 — An Implementation of The CHECK Unit
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t,=2t

3 M

M3=[2k'+1+22“]*a (bits)

[+ )}

Blocks No. 5 and

Block 5(6) subtracts lelA (IP'jIA) from Yj (Y'j) and

obtains the residue of the result. Therefore:

=M = 2%y ;
@S-MG-z x (bits)

Blocks No. 7, 8, 9 and 10

Block 7(8) multiplies two digits of @« bits each. Block
9(10) obtains the residue of the result. Therefore, the com-
bination of blocks 7 and 9 (8 and 10) requires the following

amount of hardware:

- —n2x .
M7+M9-M8+M10-2 *x (bits)

t7+t9=t8+t10=tM

Block No. 11

This is a simple comparator which compares two residues
of « bits each. This block can be implemented by a level of
exclusive OR's followed by an OR gate. Therefore, we need «
XOR's and one 1large OR gate. Assuming 3 gates per XOR and

two gate delay for each we find:
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Block 12(13) adds m operands of & bits each. Block

14

(15) obtains the residue of the result. The combination of

these two blocks is realized by levels of ROM devices

shown in Figure (4.2). The number of levels required is:

=T 1

Figure (4.5) depicts this organization when m=8

The number of modules required for this process is:

No. of Modules =1+2+22+.....+% = m-1
Therefore, the memory required is :
= =(m= 2xy
My otM) 4=M) 3#M  c=(m-1)*2 % (4.
From (4.19) the time required is:
= =[,* =
tyott 4=t gt g=L*ty, [logzm]tM (4.
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Figure 4.5 — Combination of Blocks No. 12 and 14
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4.2 Cost of The Residue~Coded Division Unit

We assume that the number of gates and the amount of
memory required for a unit is an indication of its cost.
Therefore, in this section the overall gate complexity of

the residue~coded on-line division unit will be considered.

4.2.1 Cost of The MAIN Unit

The number of gates required for a Processing Element

of the MAIN Unit is (see Appendix-A, Eq. A.30):
Gpg=64k +157k+123 (4.22)

On the other hand incorporation of error detection
schemes requires addition of extra hardware to each Process-
ing Element. This extra hardware is in the form of a ROM
module added to each PE. The capacity of this ROM (MEC-PE)
is given by Eq. (4.14). Therefore the hardware requirements

of each residue-coded Processing Element is:

(

_ 2
Gpe_pg=Cpp=64Kk “+157k+123
2
k -x+1 ax“+2_ o+l
Mpc_pp=Mp=x 2 [5-2 ] + «f8k+2 2 ]
+x 22% KX L0k (bits)

L 2 (4.23)

Since the MAIN Unit is composed of m PE's, gate and

memory required for this unit is:
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Cpc-MAIN"™CEC-PE

Mec-MaIN"™EC-PE

(4.24)

4.2.2 Cost of The RESIDUE Unit !

The only difference between the MAIN and the RESIDUE
Units is in their radices of implementation (r and r'). b
Therefore the total cost of the RESIDUE will be given by an

equation similar to (4.24) . That is:

g
r !
' 2 . 7
Gpc-pEg=M(64k' “+157k ' +123) ‘
2
= k' - -+l ' [» ¢ +2_ x+l
MEC-RES m{x 2~ [5-2 J+x[8k ' +2 2 ]
+x 22 "'——2’1‘1 +32k'}  (bits)
{ (4.25)

4.2.3 Cost of The CHECK Unit

Hardware requirements of the CHECK Unit can be obtained
by adding the hardware needed for each of its components.

Looking back to Section 4.1.3 we get:
’

15
M =3 M,

CHECK i
i=1

Coneck™C11

tCHECK=MAX(t12+t14,t4)+t5+t7+t9+t11

l (4.26)

Using the values from Section 4.1.3 into (4.26) we get:
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f

M =2a [ (m+3)22%p2K* 10k

CHECK

*GCHECKasa*l

r
‘tCHEcxatMl2+[1°gzm]]+3sg (4.27)

REMARKS :

1. Time required by the CHECK Unit is independent of the ra-
dix wused in the MAIN Unit and only depends on the required

precision.

2. In deriving Eq. (4.27) we have not put any restriction on
the check modulus (A). Therefore, this equation is valid for
all A's. But if we assume that A is a low-cost modulus
(A=2%-1) then this results in simplification of the units

and a corresponding decrease in cost and delay.

Table (4.1) illustrates Equations (4.24), (4.25),
(4.26) and the overall hardware requirements of a residue-

coded division unit with respect to r and m.
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MAIN UNIT RESIDUE UNIT CHECK UNIT RC-DIVIDE UNIT (TOTAL)
- ]
8 ) 5
s g_s a. 9) s (%9) " " T (%)
EC-MAIN| EC-MAIN] EC-MAIN| EC-RES| EC-RES| EC-RE CHECK| RC-DIVIDE| RC-STEP
5644 2656 54 5544 | 2656 54 752 6084 54
s 14200 4608 Y4 5544 2656 54 848 8112 n
-1

26952 9088 93 5544 2656 54 1232 12976 93
43800 23936 116 5544 2656 54 2768 29360 116
11088 6312 54 11088 6312 54 1264 11888 o4
28400 9216 n 11088 6312 | 54 1360 15792 n

m=16
53904 18176 93 11088 | 5312 54 1744 25232 23
87600 47872 116 11088 6312 54 3280 56464 116
22178 10624 54 22176 | 10824 54 2288 23536 54
58800 18432 n 22176 | 10624 54 2384 31440 Y74

m=32
107808 36352 93 22776 | 10624 54 2768 49744 923
171K 95744 116 22176 | 10624 54 4304 108 K 116
44362 21248 54 44352 | 21248 54 4336 887 468832 64
110K 36864 77 44352 | 21248 54 4432 62544 7

m=84
290K 72704 23 44352 | 21248 54 4816 98768 93
42K 187 K 116 44352 | 21248 54 6352 213K 116

Tuble 4.1 — Hardware and Time Requirements of the Residue-Coded Divide
Unit When ¢’ =4(0'=3) and A=3{ o =2}
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CHAPTER 5
PERFORMANCE EVALUATION

5.1 Code Performance

The purpose of this chapter is to analyze the effect of
imposing error codes on the existing on-line algorithms.
The economic feasibility of arithmetic error codes in a com-
puter system depends on their cost and effectiveness with
respect to the set of arithmetic algorithms and their speed
requirements. The choice of a specific code from the avail-
able alternatives further depends on their relative cost and

effectiveness values.

Arithmetic error codes are of special interest in the
design of fault-tolerant computer systems, since they serve
to detect (and correct) errors in the results produced by
arithmetic processors as well as the errors which have been
caused by faulty transmission or storage. The same encoding
is applicable throughout the entire computing system to pro-
vide concurrent diagnosis, i.e., error detection which oc-
curs concurrently with the operation of the computer. Real
time detection of transient and permanent faults is obtained

without a duplication of arithmetic processors. This

chapter presents the result of an investigation of the cost,
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speed, interconnection requirements and effectiveness of ar-
ithmetic error codes in on-line networks. We focus our at-
tention on the residue and AN coded division units. The
results obtained can be extended to other on-line operations

with the corresponding modifications.

5.1.1 Hardware and Interconnection Requirements

We define the "perfect unit" to be a unit in which log-
ic faults do not occur. The specified set of arithmetic al-
gorithms is carried out with prescribed speed and without
errors. For a given algorithm, word 1length, and number
representation system of the perfect unit the introduction
of any code will result in changes that represent the cost
of the code. The components of the cost are discuséed below
in general terms applicable to all arithmetic error codes

favi 711.

1) Word length: The encoding introduces redundant bits
in the number representation. A proportional hardware in-
crease takes place in storage arrays, data paths, and pro-
cessor units. The increase is expressed as a percentage of
the perfect design. "Complete duplication" (100 percent in-
crease) is the encoding which serves as the limiting case.
In residue encoding, the residue of each digit with respect
to A is attached to it and should be carried along with the

corresponding digit. Assuming that the operands and the
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results belong to a redundant number system we have:
x;4l-pse.0v0n-1,0,1,.....,0] (r-1)> p >r/2

The corresponding operands in the RESIDUE unit belong

to the set:
X'i4{0,1,2,.....,(A—1)} A<r.

The number of bits required to represent L is:

n=[10922@]

Similarly, the number of bits required to represent x'i is:

n'=[long]
Therefore, all the data paths should be increased by the

factor of n'/n.
n /n=[long]/[logzzp]~[1ogsz] (5.1)
Also all the storage requirements of the units will increase

by the same factor.

When using AN codes, digits of all the operands belong

to the following set:

x'i4{—Ap,.....,—A,O,A, ......,Ap}

Therefore, the total number of bits required is:

n'allogzzAp]

and the factor by which the word length increases is:
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F(n'=n)/n (5.2)

For example if:

r=10, p=5 and A=7

Then:

n=4 and n'=7

This results in:

[ 75%

2) The Checking Algorithm: This test the code validity
of every incoming operand and every result of an instruc-
tion. A correcting operation follows when an error-
correcting code is used. The cost of the checking algorithm
has two interrelated components: the hardware complexity and
the time required by checking. The complete duplication case
requires only bit by bit comparison; other codes require
more hardware and time. Provisions for fault detection in

the checking hardware itself are needed and add to the cost.

In the residue scheme, the checking is done by the
CHECK unit and consists of comparing the outputs of the
RESIDUE and the MAIN units. This operation is performed by
the "DETECT DIVIDE" algorithm mentioned in Chapter 3. There-
fore, the only extra hardware we require for checking algo-
rithm is the CHECK unit. A sample block diagram of this unit
is shown in Section 4.1.3 of this thesis. By referring to

this figure, we note that the hardware required to imple-:
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ment such unit is not complex at all. Also, in the next
section we prove that the checking procedure does not intro-

duces any delay into the operation of the on-line units.

3) The Arithmetic Algorithms: An encoding usually re-
quires a more complex arithmetic operation than the perfect
computer. This cost is expressed by the incremental time
and hardware required by new algorithm. As was mentioned
earlier in this thesis, the algorithms used by the error
coded units are not different from those used by the ordi-
nary units. Therefore, imposing error codes on on-line un-
its does not add any cost of this type. Also, note that we
do not require new algorithms for'the residue units. The al-
gorithms “RESIDUE OP" are exactly the same as "MAIN OP" al-

gorithms, but they are run on the residue operands.

5.1.2 Time Requirements

Introduction of error detection schemes into the opera-
tion of an on-line divide unit results in increase of the

basic recursion step time (T ). This increase in time is

STEP
due to the following two factors:
1. Time required to compute Rij)'s and R'ij)'s in the i-th

on-line Processing Element (tr).

2. Time required by the CHECK Unit (Eq. 4.27)
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Time requirements of the MAIN on-line divide wunit |is
considered in Appendix B of this thesis. From Eq. (B.1l5) in

this appendix T is:

STEP

=t _+t =ts+tPE={8k+7[logz(k+1)]+24}Sg (5.3)

TSTEP R

Adding 1 and 2 above to this equation, the basic recur-

sion step time for the residue~coded units (T ) will

RC-STEP
be:

T =t +t +tr+t (5.4)

RC-STEP s PE CHECK

The process of obtaining Rij)'s can be started as soon
as the registers TPl, TP2,TA and RW are loaded with the
correct values. Having this in mind the graph representation

of Tpc-gTgp Will be obtained as shown in Figure (5.1).

As this diagram indicates, while the CHECK Unit is exa-
mining the results of the j~th step, MAIN and RESIDUE Units
are in the (j+l)-th step. This is possible because for all
values of the radix (r) the following inequality is satis-

fied:

tottpp> t o+t for all r's (5.5)

PE CHECK

This means that the results of the j-th step can be
checked Dby the CHECK Unit while (j+l)~th step is in pro-
gress. Therefore, there is no time penalty involved in in-

troducing the check procedure. That is:
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TRC-STEP=TSTEP=[8k+7{1092(k+1)]+24}89 (5.6)

The values of TRC-STEP for various values of k have

been shown in Table (4.1). Clearly:

tEC-MAIN" TRC~-STEP™ ' STEP (5.7)

5.1.3 Cost and Delay Comparison

As was mentioned earlier, there is no time penalty in-
volved in using the error-detection schemes. The only penal-
ty that we have to pay is the extra hardware needed for the
RESIDUE and CHECK Units. In this section a comparison is
made between ﬁhe cost of the residue-coded and ordinary on-
line division units. Table (5.1) has been obtained from
Table (4.1) and shows the gate and memory requirements of
the two units.

C% is defined as:
G -G
£b= RC-DIVIDE DIVIDE*loo%
GDIVIDE
Using this table the following results are obtained:

(5.8)

REMARKS :

1. Cb is not sensitive to the number of Processing Elements
(m).

2. Ab decreases as the radix of the MAIN Unit (r) increases.
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DIVIDE
RC-DIVIDE UNIT UNIT
m r AG(%)
Sac- | Mrc- |,
DIVIDE | DIVIDE DIVIDE
4 110956 6064 5644 100.1
16 19751 8112 14200 39.1
m=8§

64 32503 12976 26952 20.6
258 493561 29360 43800 12.7
4 22183 11888 11088 100.1
16 39496 16792 28400 39.1

m=168
64 64999 25232 53904 20.6
256 98695 56464 87600 12.7
4 44359 236368 22176 100.0
16 78983 31440 656800 39.1

m=32
64 127 K 49744 107808 20.8
258 192K 108 K 171K 123
4 88711 46832 44352 100.0
16 154 K 62544 110K 40.0

m=64
64 283 K 98768 210K 20.5
2568 385 K 213K 342K 12.6

Table 5.1 - Comperison of The Gate and Memory Requirements
of The RC-Divide and Divide Units
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This implies that it is beneficial to use higher rad-
ices for the MAIN Unit. Also it is clear that in order for
the design to be economically feasible, the radix of the
MAIN Unit should be greater than the radix of the RESIDUE

Unit (r').
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5.2 Code Effectiveness

An arithmetic error occurs when a 1logic fault causes
the change of one or more digits in the result of an algo-
rithm. A logic fault is defined to be the deviation of one
or more logic variables from the values specified in the
perfect design. Logic faults differ in their duration, ex-
tent, and nature of the deviation from perfect values. The
effectiveness of an arithmetic error code in a computer may
be expressed in two forms: as a direct value effectiveness,

and as a design-dependent fault effectiveness [AVI 71].

1) Value Effectiveness: The most direct measure of ef-
fectiveness 1is the listing of the error values that will be
detected or corrected when the code is used. These values
are determined by ﬁhe properties of the code and are in-
dependent of the logic structure of the computer in which
the code will be used. Value effectiveness for 100 percent
detection (or correction) of some class of error values has
been the main measure of arithmetic codes. For example, sin-
gle error detection (or correction) is said to occur when

all (100 percent) errors of value

terl O<c<r O<i<m-1
are detected (or corrected) in an m-digit, radix-r number.
There is no direct reference for algorithms or their imple-
mentation. Codes with value effectiveness of less than 106

percent detection are useful when their cost is low and when
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other means of fault tolerance supplement the codes in a

computer.

2) Fault Effectiveness: The purpose of arithmetic error
codes in digital systems is to detect the occurrence of log-
ic faults. The detection enables the system to initiate
corrective action (error correction, diagnosis, program res-
tart, etc.). In order to assess the effectiveness of fault
detection, the value effectiveness of a code must be
translated into a measure of fault effectiveness for one or
more specified types of 1logic faults. The translation is
performed separately for every algorithm and requires an er-
ror table for every type of fault. The error tabie is gen-
erated from the description of the logic implementation of
the algorithms. The specified fault is applied to every
logic circuit which is used by the algorithm. Every applica-
tion yields an error value (or a set of error values) by
which the fault will change the perfect value of the result
to the actual (incorrect) value. The error table lists all
error values together with their relative frequencies of oc-
currence during the compilation of the error table. A com-
parison of the error table with the detectable error values
of the given code shows which entries of the error table are

not detectable. Therefore, the fault effectiveness of a code

with respect to the given algorithm and the specified fault
is the percentage of all occurrences of this fault which

will be detected (or corrected) when the given code is em-
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ployed. Less than 100 percent fault-effective codes are of

interest when their cost is low, because other methods of
fault tolerance can be used of reinforce the code. If the
fault-effectiveness for an algorithm and a given fault is
not sufficient, it may be improved by redesigning the imple-
mentation of the algorithm to eliminate some or all of the

undetectable entries of the error table [AVI 71].

5.2.1 Error Detection Analysis for Residue Encoding

In this and the following sections we focus our atten-
tion on the error-coded on-line divide unit. Error detection
capabilities of this unit when residue encoding is used will
be considered in this section and the following section ad-

dresses the same problem when AN codes are used.

By referring to the block diagrams of the MAIN and the
RESIDUE units shown in Chapter 4, the logic faults that can
happen in the error-coded units can be divided into two

parts:

1) Logic faults that occur in the SELECTION blocks of the
MAIN and the RESIDUE units. These faults result in the

and q'. ).

selection of incorrect quotient digits (q. j

J

2) Faults in the other parts of the units including faults
in Multi-input Redundant Adders, Operand Registers and the

digit transfer operation.

126

Y

"

ST e

o ar e

et o

ki
k.




The proposed residue scheme cannot detect the first
category of errors, i.e., errors in the SELECTION Units. The
reason is that, errors in a5 and q'j are compensated by
the resulting errors in the corresponding partial remainders
Pj and P'j . This is due to the step 4 of the "MAIN
DIVIDE" and "RESIDUE DIVIDE" algorithms. But this type of
error can easily be detected by the range test of the

corresponding partial remainders Pj and P'j + The follow-

ing theorem proves this claim.

Theorem (1): Any deviations of the selected quotient digits
from the correct value will result in a partial remainder

which is out of bounds.
Proof

The maximum and minimum values of the j-th partial
remainder (Pj) with non-redundant operands have been derived

in [GOR 80] and are:

-8 8

kD. - > P. >=-kD. + kr_ .9
j = F 2Py 2-kDy + kr (5.9)
Similarly, P'j is bounded by:

k'D'j - r'_sl P 2-k'D’y + k'rt 8 (5.10)

An error in either SELECTION units may increase (or de-
crease) the value of the j-th quotient digit qj=i (q'j=i')
by the amount of E (E'). Figure (5.2) shows a er-Dj plot

and the corresponding qj=i selection regions of the MAIN

i




Assume that the (j-1)-th partial remainder is in the

following range (shaded area).

L >U (5.11)

iv12 TPy 2U5
It is clear that the only acceptable value of the j-th quo-

tient digit is:

D )=i (5.12)

qj=SELECT(er_1,

j=1
Now assume that due to an error in the SELECTION Unit,

the actual (incorrect) value of qj is:




*
qj=i+E . (5.13)

The following two equations have been derived in [GOR 80]:

. -8+1
Ui (1+k)Dj’r
. -8+1
Li=(1—k)Dj+kr (5.14)
Inserting (5.14) into (5.11) we get:
a1 -8+1 . -8+1
(i+l k)Dj_1+kr > rpj_l 2(k+i-1 )Dj_l-r (5.15)

Using these maximum and minimum values of er

recursion step (Eq. 3.12), the bounds on Pj are obtained:

-1 in the basic

MAx(pj)=(i+1-k)oj_1+kr’5+1-(i+E)oj+(r-1 yr8 (5.16)
MIN(Pj)=(k+i—1)Dj_l-r'§+1-(i+E)Dj-k(r-1)r'8 (5.17)
Assuming Dj:Dj—l' (5.16) and (5.17) reduce to:
MAx(Pj)=(1-k-1-:)Dj+kr'8+1+r‘5+1-r'8 (5.18)
MIN(Pj)=(k-l-E)Dj-r's*l-kr'5+1+kr‘5 (5.19)
The allowable values of & are [GOR 80):
po8+1, 2k-ly (5.20)
—- k+1 7j
Inserting (5.20) in (5.18) and (5.19) we get:
MAX (P ;)= (k-E)D -~ (5.21)
MIN(Pj)= --(k+E)Dj+kr~8 (5.22)

Clearly, when E=0 these bounds should be equal to those ob-

tained previously (see Eq. 5.9). But, when E#0, it is easy




. R

to prove that the resulting Pj is out of bounds.
Case 1) E is Positive:

Assume:

L
MAX(Pj)=(k-E)Dj—r-si - (5.23)

Inserting the value of L_P from (5.9) in (5.23) we get:

(21<-E)Dj_<_(1+k)r‘s

Replacing & from (5.20) we get:

E>2etl (5.24)

- r

@ is defined to be in the following range:

r-12 o 23

Using this relation in (5.24) results in:

E>1+% (5.25)

This means if E>2 then Pj will be out of the correct
bounds. Note that the given derivation was for the worst
case and usually the smallest possible value of E (E=1) will
generate a partial remainder which is well out of bounds.

This can be an indication of an error.
Case 2) E is Negative:

Similar analysis follows in this case and the result

is:
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1
E<-1-% (5.26)

Therefore, in order to detect errors in the SELECTION
units, we can compare the magnitude of the resulting partial
remainders with the maximum and the minimum allowable
values. If this value is within the range then no error has
occurred. But, if it is out of bounds and the CHECK unit
does not indicate an error, then the SELECTION unit of the

corresponding module is malfunctioning.

The second type of faults that we are concerned about
are those that do not affect the selection function. They
may occur in other parts of the units including, the regis-
ters which hold the operands, multi-input redundant adders,
carry generation blocks and partial remainder registers.
These errors are detectable by the proposed residue scheme
as long as the value of the error is not divisible by the
check constant A. Referring to algorithm "DETECT DIVIDE"

this means if zj#z' for j=1,2,....,m.

3
Since the MAIN and the RESIDUE units are totally
separate, compensation of errors does not happen. But er-

rors will remain undetectable if they occur in only one unit

and |<|A=0 or in two units and |<1 - <2|A=0.

As an example assume an error in the multi-input redun-

dant adder of the MAIN Unit changes the perfect value of

*

partial remainder P. to an actual (incorrect) value Pj.

-




Therefore, referring to the algorithm "DETECT DIVIDE" we

haue-
.| .l .| P‘I A A °
Z..— X'. Y." P. 5.28
Z.’-‘- x- Y. P P' . 5.29

Subtracting (5.27) from (5.29) and taking the residues of
both sides with respect to A we get:

* * *
Z.-2'. .|, =l2'.-2".|_=|X".*(|p.-P. 5.30
| j 5'a | j A JIA | 3 (1 j J|A)|A ( )

x
The difference between Pj and Pj is the error («).

P -P
3T

Inserting this in (5.30) we get:

*
Z.-2' | =X . *<| =lIx' .| *]<}.} 5.31
R R O R S ICT BTN (5.31)

Therefore, the error will go undetected if and only if:

Ix j|A=o
or
|41,=0
*
Because, when zj=z'j step 3 of the algorithm "DETECT DIVIDE"

cannot catch the error.
For single error we have:

<=tcr ) > c 21 MAIN UNIT
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=tc'r'”J  p'> Cc' >1  RESIDUE UNIT

Assuming lr|A=|r |,=1 we get:

1<l =lcl,

< |A=Ic IA

Therefore, single digit errors will go undetected if:
fel,=0 (5.32)

le*'1,=0 (5.33)
But for the RESIDUE Unit the following relation is satisfied

(Section 3.1.3).

C'<p' <A-1 <r'-1 (5.34)

From (5.34) we deduce that:

C'<A
Therefore, (5.33) can never be satisfied unless C'=0. This
proves that all single digit error in the RESIDUE Unit will
be detected by the proposed scheme. Similar errors in the

MAIN Unit may, in some cases, go undetected.

Assuming that each radix r(r') digit is shown by
[logzr] ([logzr']) bits inside the machine, all single bit
errors are detectable as long as A is a low-cost modulus. An
Example of the error detection capabilities of the residue

encoding is shown in Section (3.1.4).

5.2.2 Error Detection/Correction Analysis for AN Encoding
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When AN codes are used in an on-line unit, the checking
procedure is simply finding the residue of each single digit
of the results, as they are generated, with respect to the
check modulus A. If the operation of the AN coded unit is
fault-free, then all these residues should be equal to zero.
A non-zero residue is an indication of the error. In Chapter
3 of this thesis we depicted the block diagram of an AN cod-
ed on-line divide unit. In this unit the check is performed
on the quotient digit (q'.) and the corresponding partial

J
remainder (P'j). Denote the number of bits required to

epresent n'., a4d'. d q'.
rep j j and 9 5

Looking back into equations (3.30), (3.31) and (3.32) we ob-

by ', B' and Y' respectively.

tain:
a'='1ogz2A29.‘] (5.35)
p-=r10922Ap'] (5.36)
Y'=rlog22Ap} (5.37)

For instance q'j is represented by ()'-1) bits for the

magnitude and one bit for sign. If 2's complement number

system is used, g j can be represented by:

y' -2

. Ly =2 x
Q' y=(Xys_jeXyi_greeeiXyaXg)= =270 Xy )+ o K2 (5.38)
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Error Detection

Single error detection requires that the minimum dis-
tance between coded numbers be 2, that is, no two coded
numbers be a distance 1 apart. Thus for all permissible q'i

] (] L L] ]
and q j (or n'; and n j or d'; and d j)

Vo o - k
a';-q j-A(qi qj)#2

This can be assured by choosing A to be odd. The choice
A=3 will detect any single error in the binary representa-
tion of the operands and the results. Notice that this
detection of single errors does not depend on «', B' and Yy
and therefore does not depend on the radix of implementatioh
(r). This means no matter how large «', B' and Y' are, only
two additional bits are sufficient for detection of a single

error.

Error Correction

Error correction can also be done if +the distance
between coded numbers is greater than 2. For single error
correction d=3 is sufficient. The following theorem speci-
fies the range of the numbers in which a single error can be
corrected using the check modulus A [PET 72].

Theorem (2): For any choice of A, if N is restricted to the

range
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-1 1
M, (A, d-1)< N <3M,(A,d) (5.39)

then AN code has minimum distance of at least 4.

In case of division +p2 q; 2-p and if d=3 then using

the above theorem:

P<3M, (A, 3) (5.40)

As an example when r=10 and p=5 then A=19. There-
fore, if-we multiply every digit of the dividend (N) and the
divisor (D) by A=19 before sending them to the on-line
divide unit, then a single error in each of the quotient di-
gits (qj) can be corrected. An example of error-detection

with AN-coded operands is shown in Section (3.1.2.3).

An Example of Error Correction

Assume r=10, =e'=p =5 and A=19 for single error

correction. From (3.30), (3.31) and (3.32) we get:

n'j “ [-1085,.....,‘361,0,361,-..--.1805}
d‘j, q'j “ [-96'-76'o.a,—19'0,19,000'76'96}

and

7'=[10922Ap]=8 bits

Therefore, q'j is represented by 8 bits inside the machine:

q'j-x.,xs,.....,xl,xO
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A single error can be in any of these 8 positions and

Table (5.2) shows that all these single errors are correct-
*

able once the residue of q'j (incorrect value of q'j) with

respect of A is obtained by the CHECK Unit.

R e s tmmmmp -t
| 1 | bit in | |q'.|A |
| | error | J |
S B T +
{ o | Xq I 1,18 |
tom—pmem e o +
| 1 | X, | 2,17 |
D et Fmm +
| 2 | X, | 4,15 |
tommpmm S o ———— +
| 3} N | 8,11 |
S Sttt TR o ——— +
| 4 | X4 i 16,3 |
bt ———— o +
e T = R +
| 6 | X i 7,12 |
$mm e o ———— +
b 7 1 X4 | 14,5 |
et ——— tem—— - +

- — - - - - — — —— D — S — —— - — — " - D . ——— -

Since the residues shown in Table (5.2) are unique, a
single error 1in any of the 8 positions can be corrected
without ambiguity. The following is a block diagram of the

CHECK Unit for this example.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis we have presented a method for detection
and correction of errors in on-line arithmetic algorithms.
This method is based on low-cost arithmetic error codes and
encodes each digit of the operands separately. The encoded
operands pass through the arithmetic unit digit-by digit,
most significant digit first. The proposed algorithms are
such that they preserve the codes, therefore each digit of
the result must conform with its code. In this way, and
depending on the code used, errors in each single digit of
the result can be detected or corrected. The need for such a
detection/correction scheme arises from the fact that on-
line arithmetic requires relatively long sequences of opera-
tions in order to achieve speed-up over conventional arith-
metic. Therefore, it 1is important to protect them against
hardware failures. If not protected, the hardware failures
could quickly contaminate large number of results in pro-~
gress due to tight coupling of the steps at the digit level.
By detecting errors as they occur, an effective gracefully
degradable organization could be achieved. This means, error

at the j~th step would 1lead to restriction of precision

(significance) of the remaining steps but not catastrophic

e i

-




termination.

|
We presented two methods for such a }
detection/correction scheme: 1) Residue encoding: 2) AN en- 1
coding. In the first method, residue of every digit of the |
operands with respect to a constant is attached to it and is
sent to the on-line unit. Two separate processors, process
the operands and their residues. The result generated can be
checked for having the correct residue with respect to the

same constant. In this way, we proved that a single error in

each digit of the operands and the corresponding results can

be detected. Also, we proved that an error in the selection
of the result digits can be detected even without using the
proposed residue scheme. It is interesting to note that, no
new algoriéhms are necessary for the residue-coded operands.
The algorithms are the same as those developed for ordinary
operands. The only new algorithm that is needed is the one

used by the detection process.

In the second approach, each digit of the operands is
multipied by a constant before entering the on-line network.
This code is preserved throughout the network and each digit
of the final result can be checked for divisibility by the
same constant. We showed that depending on the check
modulus, a single error in each digit of the result can be

detected or corrected.
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The error-coded algorithms and a block diagram imple~
mentation of the corresponding units have been presented in
this thesis. A detailed design of a digit-sliced on-line
division unit was also considered. This unit was designed as
a set of basic Processing Elements (PE) each of which
operates on a single digit of the operands and the results.
Assuming that the radix of implementation is r (=2k), number
of gates required for one PE has been proved to be propor-
tional £o kz. Also, number of pins required is proportional
to k. In short, we showed that the number of gates vary from

350 to 5500 for radices 2 to 256.

Processing time of a PE is also an important factor and
was determined to be in the range of 39 to 116 gate delays
for the aforementioned range of radices. Finally, we extend-
ed this on-line unit to encompass the residue~coded
operands. We proved that the imposition of residue codes on
on-line division unit increases the gate requirements by no
more that 39%. The checking procedure can be overlapped with
the operation of the MAIN Unit and in that sense there is no
time penalty for introducing error-codes into the on-line

division unit.

There remain several areas of interest that need furth-
er research such as the extension of this work to other
functions such as logarithmic, trigonometric, and exponen-

tial. It is apparent that the E-method [ERC 75] is a good
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candidate for such an extension. It 1is believed that the
detection/correction procedure outlined in this thesis can
be applied directly in this and similar cases. Another
point of interest is the actual implementation of the on-

line processing units in VLSI. Also the simulation of the

proposed detection/correction schemes and experimental vali-

——— e e .

dation of the code effectiveness warrants further research.
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APPENDIX A

HARDWARE DESIGN OF AN ON-LINE DIVISION UNIT

In this appendix we consider the hardware implementa-~
tion of the MAIN DIVIDE Unit. Since MAIN and RESIDUE Units
have similar organizations, it 1is obvious that the same
design can be applied to a RESIDUE Unit with minor modifica-

tions.

In order to design such a unit we assume that the on-
line unit consists of a linear cascade of identical Process-
ing Elements (PEs). Each PE is a complex logical module and
contains logic to perform on-line operation under the con-

trol of the Global Control Unit (GCU).

Figure (A.l) shows the schematic organization of on-
line division unit along with the GCU.
EU performs the exponent calculations.
END UNIT allows the last PE to be identical to all the other

PEs as far as interface is concerned.

The PEs collectively contain the fractional parts of
all active operands, one digit in each PE. Most significant
digits are in PE, and least significant digits in PE . Out-

put digits are generated by the most significant Processing
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Figure A.1 — Orgenization of an On-Line Division Unit




Element in an on-~line mode and are placed on the 2-Bus.
Each output digit is stored by all PE's temporarily and at

the same time reaches the next on-line unit.

After receiving the output digit and the transfer in-
formations from the right-hand neighbor, each PE starts the
computation and generates one digit of the partial
remainder. Depending on this partial remainder and the trun-
cated version of the divisor, next quotient digit is select-
ed by PE1 and is placed on the output bus. This operation

continues until the required precision is obtained.

In order of determine the operation of each PE. we look
at the Dbasic recursion formula for on-line division (Equa-

tion 3.12):

= - -8 _ -8
Pj-er_l quj+nj+§r Qj—ldj+8r (A.1)

Assuming that each of the operands are m digits 1long we

have:
3 5.-i
P37 X PiT (A.2)
j+8 -i
D.= % 4,
375 T (a.3)
J

p:= The i-th digit of the j-th partial remainder (this digit

i
is in PEi).

n; o di= The i-th digit of the operands (resident in PEi).
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The digits processed by PEi in step j of the algorithm

will be obtained by the following picture:

S b S, o) § j=-1 j~1 j-1
rpj_1 P *p2 R Y LR < R -3 0]

Dj =0*d1'.“'dS"."“'“"'di“.dj‘.'s."o'"‘.”"“"0

_S_*
nj+sr -0 0.....0nj+80....-.-..........-.-................0

j=1.-8 _
Q r '—0*0.-.'-0q1q2...........qi+1_8..--.qj_lo...--....-o

* is the decimal point

- A —— - — " ——— —— — . P = ——" - Ty - — — . — — —— Y — - - - - = = = - -

Therefore, the digits processed by PEi are obtained and

(A.1) becomes:

(3)__(3-1) .
;i =Pily -4 jdi*+nyegli=8l-q;,, _gd4,*T

(3)__p(3)
3 rT 1 (A.4)

i i-
where nj+8[i=§] means "j+8 will be added in PEi only if i=8.

Téj) = transfer digit from PEi+1 at the j-th step

Tigi = transfer digit to pEi-l at the j-th step

It is obvious that d;41-§ is zero in the Processing

Element not in the following range:

9i+1-8  3-248> i >8

9;+1-8%|0 otherwise
(a.5)

Using Eq. (A.4) the following picture for the on-line divide

unit will be obtained (Figure A.2).
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Figure A.2 - Interconnection Between Processing Elements
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In order to eliminate carry propagation between the
PEs, we assume that each digit of the partial remainder

(péj)) in PEi is represented by an interim partial remainder
(3)

(wij)) and a transfer digit (Ti ) such that:

pij)=w§j)+T§j) (A.6)

The transfer function in Eq. (A.4) 1is obtained by a
series of three transformations f1 ’ f2 and f3 such that:
r
p, (3) .
1 1(3)
s = * =
£1 % "954,.8"d45487T0) Wy
P,(3) .
£, -qj*di=rt.2 423

l 2 i-1 i (A.7)

The transfer digits from PE; to PE, are

py (3) py(3)
ti1 and t;-, resulting from transformations £, and £,

respectively. Also there is a transfer digit out of the
Multi-input Adder (t?if)). Therefore:
.y P1(3) p,(3) .
p(3) 01 2 A(3)

is17tier Yo g
substituting (A.6), (A.7) and (A.8) in (A.4) we get:

(A.8)

4
(3) . (3-1), . (3-1)_ 2(3), 1(3)
wi e e 0T e e
+nj+8[i=§J-rt?£3)
£, . .
3 v P(3) p,(3) .
Tij)ztil +ti2 +t?(3)

. ; . .y Py(3) p,(3) :

152

er— mﬁ RaPiver=+> NS Mgl ave SIS




A block diagram of transformations f1 ' f2 and f3 is

shown in Figure (A.3).




") ,
' |
I ;
/ | !
A(n) MULTI-INPUT A(j-1)
-1 RADIX — r ADDER : i tin
(t5) |
(l) | (i-ﬂ Lv‘
" P | | Py (j-1) M |
. o |
i-?|(l) ‘ * s W (,-1) t , :
P AL_AL' XE ;
LU W0 t, ,
|
k\ DIGIT / ]
PRODUCT ¥
GENERATOR
| (ty)
wiz(i) A ;
| ore |
| (t,) |
S = SRR
-di qi di+6 -qi°5+1

Figure A.3 — Functional Reprasentation of the Digit
Algorithm for On-Line Division




Transformation f3 essentially requires a radix-r
multi-input adder which forms the sum of the digits of both
signs. This adder is implemented as a k-stage (r=2k) linear
cascade of a radix-2 multi-input adder where each input of a
radix-2 adder can assume three values {1,0,1}. The organi-

zation of this adder is shown in Figure (A.4).

*
The products qj di and qi+1—8*dj+8 are generated by two
separate product matrix generators which consist of a k*k
square array of redundant binary product cells. Each cell
*
performs the product of two redundant binary digits qj and
1
*

di and its output product digit is also in the digit set
m ;

{1,0,1}. Figure (A.5) shows the operation of the digit pro-

duct generators fl and £, (k=4).

2

Therefore, transformation f3 requires k MIRBAs (Multi-~
Input Redundant Binary Adder), each capable of summing
2(x+1) redundant binary inputs, as well as the 'Transfer’
from the adjacent MIRBA position [GOY 76]. Figure (A.6)
schematically shows the implementation of f3 for radix 16,

that is, k=4.
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A.l Design of a MIRBA

MIRBA is a limited carry/borrow propagation aifer e
accepts several redundant binary inputs (digit se* !
and produces one redundant binary output (with apprr - .

adder Transfers for more significant adjacent adter e° a1

Using Rohatsch's technique [ROH 67], a 197 inp.:: @ es.
can be realized with four simple transforma+ionnse LA
(A.7) shows one such four level (each level indicace!

box) adder which is applicable for k<6.

Another way of implementing MIRBA's is the Log-sum *te«
technique. In this scheme each MIRBA can be implemente! N,
a log-sum tree structure of two input redundant binary
adders (Borovec Unit [BOR 68]). For a 2(k+1l) input MIRBA,
the tree structure has L levels of Borovec Units (BU) such

that:

L=[log22(k+1)] (A.10)
and the number of BU's required is (2k+l). Figure (A.8)

shows the log-sum tree structure for a 10 input MIRBA.




P = L_ 01
01
LEVEL
2,101
0.1 @— - 0,1
0,1
LEVEL 3
3....4
7.0.1 t q 1 1'0'1
-‘.'0'1 h—' ?,0,1
10,1 <@————y 1,01
0.1
__LEVEL4
14....,0,...15}

]

10 INPUTS e{T,o, 1}

Figure A.7 — Illustration of the Algebraic Design of s MIRBA Using Simple Transformstions
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A.2 Logic Design of The Processing Element

The major components of the PE are the Register File
for the storage of active operands, The Digit Processing
Logic (DPL) which is essentially a large combinational logic
circuit and Local Control Unit (LCU) which supplies the con-
trol signals in proper order to condition the combinational
DPL. PFigure (A.9) shows the schematic block diagram of a
Processing Element. The register file comprises a set of
digit-wide registers which are used to hold the operand di-

gits and the result digits.

The DPL operates on the operand digits stored in the
register file of the PE and the informations received from
its right neighboring PEs. It also generates Transfer infor-
mation for its left neighbor PE. The LCU issues the timing
control signals to the processing logic for sequencing the

various steps of the digit algorithm.

The register file is a set of registers that are used
to hold the operands and result digits. Each PE retains one
digit of each of the active operands. Each register is (k+1)
bits 1long to hold the k-magnitude bits and one sign bit of

one sign and magnitude encoded radix—2k digit.

There must be at least seven registers in a PE. One for
the dividend, one for divisor, one for quotient digit and

one for interim partial remainder (wij)). Three other regis-

m—— o T




OPERANDS AND THE RESULT BUS

FROM/TO MEMORY

—& REGISTER FILE

L4

l

I

|

|
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Figure A.9 — Block Disgram of a Processing Element.




ters are used to hold the transfer functions (TEJ)) coming

In the next step of the computation (j+l1) these
(3)

i

from PEi+1'
functions are gated to PE, , along with w They consti-

tute the operands of PEi_l in step (j+1).

There are other registers in a PE which are used to
hold the intermediate results. These registers are located

in DPL and will be shown later.

The registers in the register file are 1loaded from a
buffer register, IBR whose contents are determined by the
internal Register Input Bus Selector, SRIB in the Digit Pro-
cessing Logic. Similarly, the contents of the registers are
inputed to the DPL either directly or through an Output Bus

Selector SROB, also in DPL.

A.3 Block Diagram Description of DPL

Figure A.10 shows the data flow structure of the Digit
Processing Logic (DPL) in a block diagram form. It consists
of three major components- the Digit Product Generator, DPG,
a radix—zk multi-input adder MIAD, and a Digit Sum Encoder,
DSE. DSE converts the redundant binary sum output of adder
MIAD to the Sign and Magnitude format for local storage in

the Register File, or transfer out of the PE.

As shown in Figure (A.10) are input and output ports

designated as TIPi ' RIPi and TOPi, ROP, , respectively. The
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SELECTION B [ —RwsRoB AN — —— INPUT BUS SELECT ST e
K== 5 BUS SELECT [+ 7ASHO8 Q.M"Wo C
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Zgoe s — : 313
3;283.:: "E
11111 Al
n -1 -
[ RADIX 2K
T MULTI-INPUT ADDER
" IMIAD)
a. w
sTOP STP |A—— ._.-1.
FROM PE_
]
RO,
< "
K P40
TOPE, 51 ta
T Pl
N
[ cHs1 RW;
NP FROWM PE,
Tstop ! ()
CHS1
bﬂ T
'3 a-sus
n-BUs
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input port TIPi carry the 'Transfer' (carry or borrow) from
adjacent MIAD and the contents of some register in the Re-
gister File of the adjacent PE;,,+ RIP; carry the quotient
digit from PEi+1—§‘ The output ports TOPi and ROPi carry

similar information for PEi-l and PEi+l-§ respectively.

A.4 Logic Design of a Radix 2* Multi-Input Adder (MIAD)

In general, a radix—2k multi-input adder consists of a
linear cascade of k MIRBAs. A 2(k+1l) input MIRBA is imple~
mented as a tree structure of BUs (see Fig. (A.8)). Each
MIRBA requires 2k+l BUs and are arranged in L={10922(k+1)]

levels. Therefore:

GMIAD=k(2k+1)GBU (A.11)
=T, %

tyap=L SBU (A.12)
GMIAD =Number of Gates Required for One MIAD
tMIAD = Delay of One MIAD
GBU = Number of Gates Required for One BU
SBU = Delay of One BU

For a 2(k+1) input adder, the number of pins required

for the input and output adder transfers t?if_l) and t?if)

are 2(2k+l) each (see Figure A.8).

|
{
|
'
!




A.5 Logic Design of DPG

The Digit Product Generator forms the product array of
two signed radix-2k digits. It accepts the two digits encod-
ed in Sign and Magnitude format and outputs the product ar-
ray in redundant binary. The logical design of DPG is shown

in Figure (A.1ll).

The number of gates required for each DPG is [GOY 76]:

k2 AND GATES
1 XOR
[ 2 2
k™ XOR or 2k“ AND . for LVEl
SM/RB x2 aAND for LVE,
NONE for LVE, (A.13)
. .

The pins contributed by DPGs to the pin complexity of

py (3)
DPL are those pins which are required for tiil '
p,(3)  py(3-1) p,(3-1)
ti-1 0 b4l and ti; -
No. of pins for a transfer signa1=1+51%fll ' (A.14)

A.6 Logic Design of Digit Sum Encoder

The Digit Sum Encoder (DSE) transforms the redundant

binary sum output of the radix-2* adder into an algebraical-

ly equivalent radix-2% sum digit in Sign and Magnitude for-

mat for either 1local storage in the Processing Element or

PRI g 7Y
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< |ﬁ+) , SIGN BIT)
P
: Q.
i-1 | KXK & G

“ - A AND -

k- | GATES .
2
SIGN BIT :

Figurs A.11 — Logicel Design of The DPG




transmission out of the PE. Total number of gates, GDSE re-

quired by DSE logic has been found to be [GOY 76]:

lék for LVE2 and LVE3

Gpse ~f26k for LVE,
(A.15)

A.7 Logic Design of Selectors SRIB,SROB,STOP and STIP

The selector SRIB is a seven input multiplexor. It con-
stantly examines the data on D, Q and N Busses. If the data
on any of these busses belong to PE;, it writes this data in
the corresponding registers in the register file. It also
gates the output of DSE (wﬁj)) to Register RW in the Regis-
ter File. The transfer function Tij) (=t?(j) ,t?l(J),tfz(])
which should be sent to PE; ; in (j+l)-th step is gated
through this selector to Register File for temporary

storage. The width of the selector is obtained by the fol-
lowing equation:
1

p; (3)7F py(3)
i i

= + .
b=MAX fk l,PtA(]),P
i t

- i A(3j)_
p A(H) Pin Count of ty 2(2k+1)

Y

P pl(j)s Pin Count of ti =]+ —

ty

169

TN S NSO N e L L PR M - T~ . g BPrrtn Hforn. i G,




. p,(3) x(k-1)
P pz(j)= Pin Count of ti =1+ —
t.
i
Therefore:
b=2(2k+1) (a.16)

The logic design of SRIB is similar to that shown in

(GOY 76] and the number of gates required is:

~ k(k-1) 2
GSRIB~b+b+2(l+-——3———)+4(k+1)-k +11k+10 (A.17)

The selector SROB selects the contents of one of the
registers of the Register File on to the Register File Out-
put Bus (ROB). The gates required for this network are
dependent on the number of registers in the Register File
and the bit width of the registers. There are seven regis-
ters in the Register File. For radix-2k . four of them are
(k+1) bits wide, one is 2(2k+1) bits wide and the other two
are (1+ EL%fll

of SROB are exactly same as that of SRIB, that is:

) bits wide. Therefore, the gate requirements

.2
Ggrop=k +11k+10 (A.18)

The width of selector STOP is equal to the width of
output port TOP;. The width of TOP, is determined by the
maximum length of "Adder Transfers". Therefore, the width of
’I'OPi is given by Eq. (A.16). Logic implementation of STOP
is shown in Figure (A.12). From the given design we con-

clude that:
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k(k-1),_,2
GST0P=3b+2(1+ > )=k“+11k+8 (A.19)

The selector STIP is actually a four output demulti-
plexor. The width of STIP is exactly the same as that of
STOP and is therefore equal to b. The 1logic implementation
of STIP is simple and the number of gates required for this

element is:

GSTIP=b+k+1 +2(1+

Figure (A.13) shows the logic implementation of this selec-

KoL)y ok 2egkes (A.20)

tor.
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172




| — DEST 1 't
{ ) - i

"ﬁ — DEST 3 3

b— DEST 4

s & & & 0 & 0

e ¢ o »

)——r—- DEST 1

.______} DEST 2

STIP,

Figurs A.13 — Logic Implementation of STIP




A.8 Storage Buffer Registers of DPL

DPL has ten buffer registers, R1 through R9 and 1IBR.

k The width of each of these registers has been indicated in

Table (A.1l).

tommm— e ————— +
|Buffer ReglWidth bitsl
TR —— e +
| Ry [2(2k+1) |
Fommme R e tommmm e +
| R, 1k+1 |
Tt o ———— +
| Ry |14k (k=-1)/21
oS o +
| R, [14k(k=-1)/2]
oS Fmm e ———— +
| R Ik+1 |
s e Fomm e ——— +
| Rg | k+1 |
tommmm—c———— tmmm——————— +
| R, | k+1 |
YL tomm——————— +
[ Rg [k+1 |
e B i +
| Rq [k+1 I
ot T . +
i | IBR  [2(2k+1) |
T TR —— o +

Table (A.l1)- Width of The Registers in DPL
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A.9 Design of SM/RB, CHS1l and CHS2 Blocks

SM/RB block encodes the input which is represented in
Sign and Magnitude format to redundant binary representa-
tion. There are nine distinct ways that we can encode a sign
and magnitude number. The simplest one is the encoding that
assigns the sign of the number to all the bits. Adopting
this simple encoding, there is no gate requirement for SM/RB

block. Therefore:

GSM/RB=O (A.21)

CHS1 and CHS2 are sign changers and since their inputs
are in Sign and Magnitude format, they can be implemented by

a single inverter gate. Therefore:

G

CHSl=GCHSZ=1 (aA.22)
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A.10 Design of The Quotient Selection Unit

The selection of the quotient digits is done by the
most significant Processing Element (PEl). The quotient di-
git selector inside PE1 is a table look-up device which im-
plements the SELECT function (see Algorithm MAIN DIVIDE). It
examines )Y most significant digits of er_l and o most sig-

nificant digits of D,

3-1° in order to select the appropriate

quotient digit, qj.

G G- Gl

woow, LM
dq 00
d2
. QUOTIENT
. SELECTION
dO
qQ

Figure (A.14)- Quotient Selection Unit

. —— - — - D D S D D T D T D D D S S S L D G - T S T - - S - - Y D T - A - -

176

e




According to Eq. (A.9) :

m . . m . ' .
= (3-1), ~i_ = ¢ (3-1) _(3-1)4 -i
Pj-l'i:ipi *ro= i:1[wi Ty Ir (A.23)

Therefore, truncated version of P.

j-1 (i.e., Pj-l ) is:

Y . . .
=5 pw! I dypld-t)y i

. i i
i=]

P,

j-1 (A.24)

This means Ti's and wi's can be used as the address
lines of an ROM device implementing the SELECT function. It
is not difficult to see that even for small radices the
number of input lines to the device will be prohibitive [IRW
77]. Two techniques to avcid this dilemma are available: 1)
Use a PLA, or 2) Perform Carry Propagation on the most sig-
nificant portion of Pj—l to reduce the number of 1lines re-
quired. Irwin shows that the number of input line will be
reduced by up to 44% if this technique is used [IRW 77]. 1In
estimating the cost of the Processing Elements we have ig-
nored the cost of the Selection Block. Because, it effec-
tively appears in only one PE (PEI)' The time required by
the selection process has been estimated to be of the order
of 4-5 gate delays [ERC 75, IRW 77]. In the delay analysis

of the division unit we assume

tselectats=4§g

e W g N

T P R T e e R




A.11 Gate Complexity of Digit Processing Logic

The total number of gates we require for the implemen-
tation of DPL 1is the sum of all the gates we require for

each of its components. From Equation (A.1l1) we have:

Gyrap=k(2kr1)Gy,

Each Borovec Unit (BU) requires 26 gates [GOY 76].
Therefore, the total number of gates required for the

Multi-input Adder is:

GMIAD=26k(2k+1)

other components of DPL require the following_ number of

gates:

G =k2 AND +2 XOR =k2+8 GATES

DPG(1)

2

GDSE=16k

2
GSRIB-k +11k+10

2
GSROB—k +11k+10

12
GSTOP—k +11k+8

2
GSTIP k“+4kF+ 5

Gsm/rB=C
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Gons1™ Ccnsa™!

Adding these together we get:

2

GDPL=58k +79k+51 (A.25)

Table (A.2) shows the gate complexity of DPL.

A.12 Pin Complexity of DPL

The pins required for digit processing logic DPL is the h

sum of the pins necessary for input ports TIPi, RIPi and

output ports TOPi and ROPi. The total number of pins, PDPL

necessary for 1logic implementation of DPL is equal to the

sum of the pins required for input and output ports.

P P +P +P

=] +p
DPL TOPi ROPi TIPi RIPi
from (A.22) we have:
P =p =p . =2 (2kr1l)
TIP, ~TOPy t?if 1) (A.26)

and since the information on RIP, is a single digit then:

P =p =k+1

ROPi RIP1 (A.27)
plugging (A.26) and (A.27) in the equation for Phpr, We get:
PDPL=10k+6 (A.28)
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r k |Smap| Sope | Gose | ®sris |®sros | Cstor | SsTip | GprL

4 2 260 | 12 32 36 3 M 17 a

8 3 546 | 17 48 52 52 50 26 | 810

6| 4 936 | 24 64 70 70 8 37 | 1206

32 5 | 1430 | 33 80 90 90 88 50 | 1896

64 6 | 2028 | a4 9 | 12 | 12 | 10 65 | 2613

128 7 | 2730 | &7 12 | 138 | 138 | 134 82 | 3446 ﬂ
256 8 | 3538 | 72 126 | 162 | 162 | 160 | 101 | 4396

Table A.2 — Gate Complexity of DPL V8 Redix for LVE, 1
Encodirig of a Redundant Binary Digit. '




A.13 Overall Logic Complexity of a PE

The total number of gates, G required for the imple-

PE’
mentation of a PE is the sum of the gates required for the
combinational logic of DPL, the gates required for the PE
control 1logic and the gates required for the implementation
storage registers in the PE. The storage registers in a PE
comprise the registers in the Register File and buffer re-

gisters in DPL. Using Table (A.l) the number of gates needed

for storage is:
Ggpo=[6 (kr1)+4(2kr1)+k (k-1)+2]G

=(k%+13kr12)G,
GD is the number of gates required for the realization of a

D type flip-flop. Assuming G, =6 [TEX 69] we get:

e 2
GSTO—Gk +78k+72 (ar.29)
Ignoring the number of gates needed for PE control, the

number of gates required for each PE is:

Cpe=CppL*CsTO
Substituting the values from Equations (A.25) and (A.29) we

get:
GPE=64k2+157kb123 (A.30)

The pin requirements for each PE is the sum of pins re-
quired for DPL plus the number of pins needed for input and

output busses (ignoring the pins required for control signal
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from 3CU). That is,

p P

P

pe"PppL*Pn-Bus*Pp-sus*Pq-BuUs

or

PPE=1 3k+9 (A.31)

The pin and gate requirements of DPL and PE along with
the gate requirement of other PE components have been shown

in Table (A.3).




r

v OZ.)U GOB nwcmm sz_w szow om._. orP Om._. 4 QOV_. 101_. oﬂ. (o) va vvm

2 78 9 16 22 22 20 10 188 16 168 ) 22

!

4 260 12 2 38 36 34 17 441 26 252 603 3%

8 546 17 48 62 62 50 26 810 36 360 | 1170 48

16 936 4 g‘ 70 70 68 37 1295 46 480 | 1775 61

32 1430 3 80 90 ) 88 60 1896 56 612 | 2508 74

64 2028 4“4 26 12 12 10 5 2613 68 758 | 3309 87

128 2730 57 112 138 136 134 82 3446 76 912 | 4368 100

258 3636 72 128 162 162 160 101 4395 86 1080 | 5475 13

Teble A.3 — Gate and Pin Complexity of s Processing Elemnent vs The RADIX {r)
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APPENDIX B

TIME (DELAY) CONSIDERATIONS OF AN ON-LINE DIVISION UNIT

Time required to compute a single quotient digit (k+1
bits) 1is composed of the following elements (see Algorithm
MAIN DIVIDE).

1. Time to select a quotient digit (ts)
2. Time to update Qj and D, registers (t )

J
3. Time to perform the basic recursion formula (tR)

The following diagram indicates the relative position
of these three delays with respect to one another.

ni..,&. ‘”6 ARRIVE

! SELECTION . UPDATE

— $ -
4 q Q
=1 } i "i"‘ s ﬂAMIZ) ‘i* 541 ARRIVE
UPDATE ) RECURSION L SELECTION |
0; 'l Qjﬂ
| T |
I sTEP I

- —— - —— — ——— - —— — —— " - ——— oy - —— D —— D = = - - Y ——— = = -

Since usually ts and tgp are dgreater than tyr the total

time for one step of the algorithm (T




=t8+tR (B.1)

Terep

Each step starts when the digits of the dividend (nj+8)
and divisor (dj+8) appear on the input busses (N~BUS and D-
BUS). At the beginning of each step selection of the quo-
tient digit (qj) is initiated by the quotient selection unit
in the most significant Processing Element (PEI)' This
selection 1is based on the truncated version of the previous

partial remainder (Pj_l) and divisor (Dj_l).

. PE1 outputs qj on the Q-BUS. After reception of this
quotient digit and some other informations from its right
neighbor, each PE starts processing of one digit of the next
partial remainder (Pj). After certain amount of time (tPE)'
next partial remainder will be available in a redundant for-
mat (wij) and Tij)). This process continues until required
precision is obtained. We compute tog by measuring the time
span between the setting on all registers (Rl through R9) in

PE; at step (j) and@ (j+1). Therefore (B.l1) can be rewritten

as:

Tsrep~tsttpE (B.2)

Graph representation of tottop is shown in Figure (B.1)
[refer to block diagram of the MAIN Unit in Appendix-A].

Using this graph TSTEP is found to be:

Tsrep™2tsriattpsettmianttsm/rettsripttsTop
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'stop 11| SRiBj

|
|
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) R
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STIP
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|
|
|
I
_
_
1 [
_

R t
SM/RB
A

ﬂ
|
|
|
|
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+3

(B.3)

tsros*ts

The components of TSTEP are as follows:

The time required by the selection block has been es-
timated to be in the order of 4-5 gate delays [IRW 77]. As-

sume:

t =48 (B.4)

tsRriB:

Logic design of Regigter File Input Bus Selector (SRIB)

is given in Appendix-A. According to this design:

tSRIB=2Sg {B.5)

tsros*®

Referring to Appendix-A :

tSROB=2Sg (B.6)

Also we have:

t 28 (B.7)

sTop~ “°g
and

tCHSl=Sg (B.8)




Assuming LVE, (Logic Vector Encoding) for the operands
[GoY 76], and according to what has been explained in the

design of the Digit Product Generator we get:

t 28 (B.9)

DPG™ “XOR™2%g

tMm1aD?

According to Eq. (A.12) in Appendix A :

=1.%

turap=t*8gy (B.10)
such that: L={10922(k+1)] and SBU is the time required by
one Borovec Unit [BOR 68]. Using LVE,, SBU is obtained to be
(Goy 76] :

SBU=7§g (B.11)
Therefore:

tMIAD=7§g[10g22(k+l)] (B.12)
“psE!

From the design given in [GOY 76] t can be estimated

DSE
approximately to be:

tDSE~5k§g+3k§g=8k§g (B.13)

tsrIp?

According to the design given in Appendix A :
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ts,npssg (B.14)

Adding the components in Eq. (B.3) we get:
TSTEP=[8k+7 [logz (k+1 )'|+z4]sg (B.15)

Table (B.1l) shows Tgnnp and its components. From this
table it can be deduced that contribution of "“Digit Sum En-
coder" (DSE) to the total step time dominates all other com-
ponents for relatively large radices. But this unit can be
eliminated if wij) can be stored in redundant format. That
is, RW and R2 should be made to be double bank registers.

Also STIP, SRIB, SROB and STOP blocks should be modified.
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2

1
e T T e R e

| 24 | 21 |

2

e T e T s e ST S

| 8 |3

! 77

2
T YT EAAIST SR UGU SRS SRR SRS SR R ST PR S

2

1

| 32 | 28 |

2

| 4

116

| 85

2
T o S ——

2

!

1

40 | 28 |

2

] 5

|32

| 93

2
T T e T o T

2

1

| 48 | 28 |

2

| 6

|64

| 101

2
S

2

1

| s6 1 28 |

2

7

j128]

| 116

2
e T T

2

1

| 64 | 35 |

2

|1256| 8

Table (B.l)- Time Required for One Step of the Division

Process (TSTEP) and its Components
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APPENDIX C

ON-LINE MULTIPLICATION

The problem of on-line multiplication has been ad-
dressed by Trivedi and Ercegovac [TRI 77] and by Irwin [IRW
77]. These two references deal with on-line multiplication
when the operands are represented in a non-redundant number

representation system.

The purpose of this appendix is to present a systematic
method for derivation of on-line multiplication which is
compatible with the method given for division [GOR 80]. The
problem of redundant operand ﬁultiplication is addressed and
it will be proved that the given upper bounds for the
operands in the aforementioned references are pessimistic

and the correct value will be derived.

Redundant Operands

Let the radix r representation of multiplicand, multi-

plier and the product be denoted by X, Y and R respectively

such that:

j=1 1 (c.1)
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Y= £y, i

T Yit (c.2)
R=% p.r-i

BT (c.3)

and R=X*Y to m digits of precision.

We assume Xy and Yy belong to the following redundant

digit set:
X 0¥y 4 {-p',...,T,O,l,...,p'} (r-1)> p' >r/2 (c.4)
p; may belong to a different redundant digit set:
p; < {-0+...,1,0,1,...,0} (r-1)> p >r/2 (c.5)
Redundancy coefficients of X, Y and R are defined as:
k==Br  (r-1)2 p >r/2

k'=§¥r (r-1)> p' 2r/2

Assume that X and Y are bounded by a positive constant
M such that:

-M< X,Y <M (c.6)

M specifies the maximum and the minimum values that the
operands can assume and is a function of r and p. This value

will be derived later in this appendix.
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The algorithm which produces the product of two redun-

dant operands X and Y is called the Algorithm "MULT" and is

shown below [TRI 77]:




Algorithm MULT

Step 1 [Initialization]:

P SO,XOSO, Y.=0

0 0

ROSO, p0=0
For j§=1,2,....,m Do:
Step 2 [Input Digit]:

= =3
xj Xj_1+xjr

Y.=Y,  +y.r 3
§Tr§-17Y 5%

Step 3 [Basic Recursion]:

P.=rP., .-rp. . +X.v.+Y. . c.7
B B SRR PSR b S M B R (c.7)

Step 4 [Selection]:
.=SELECT (P .
Pj SELECT ( J)
R.=R, .+p,r_J
j T 3-17P3T

Step 5 (End Do)




Proof of Convergence

Inserting different values of j into the basic

sion formula (Eq. C.7) we get:

j=1 — P. =X

1™M1Y1

j=2 = P,y=rX,y; +X, ¥, +Y 1 X,71P)

2
r szz-rp1
j=3 — P_=r>X.Y.-(rp,+p,)
3=F X3Y3=(rp +P;

Continuing this procedure Pj is obtained as follows:

p.=rix.y.-(ri-? 3-3
J=r YJ (r

3 p1+r

p2+...+pj_1)

j 3
r°X.Y.- R.
TR TE R

when j=m
m
Pm=l:'rnmell1-r Rn-1
From (C.3) we have:

= -m
R Rm—1+pmr

Inserting this in (C.9) we get:

m -m
PmsrmXY-r (R-pr )

or

-m
R=XY=-r (Pm-pm)

recur-

(c.8)

(c.9)

(C.10)

By devising a product digit selection procedure,

SELECT, in Step 4 of the Algorithm "MULT", such that:
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PP, 1< k (c.11)
R=X*Y can be computed to m digits of precision. Note that
the algorithm as it stands produces just the most signifi-
cant half of the product. The least significant half of the
product is available as the redundant output of the adder

after iteration m+l, i.e.,

P (C.12)

m+1=F P
By feeding these redundant adder digits directly into

the recoding unit, the least significant half of the product

can also be output in conventional form.

Range Restriction Analysis

Assume that the required SELECTION process in Step 4 of
the Algorithm “MULT" is found and the graph of Figure (C.1l)
is obtained. This is a plot of partial product at step 3Jj
versus partial product at step (j-1). This plot is desig-
nated as a P-P plot [IRW 77]. By analyzing such a plot, a
product digit selection procedure can be specified for the
given r and p. The notations used in this graph are similar

to those used for division [GOR.80].

Ui - Upper bound for the region in which pj_l=i

L, - Lower bound for the region in which pj_1=i
i

j)

product digit.

(p - The j-th partial product with pj_1=i chogsen as the
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and the fact that PJ shoulgqg be bounded by Some Constantg
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In step (j-1) assume pj_lsi is chosen. From the basic

recursion formula (C.7) we are able to find the maximum

value that Pj can assume.

pj_1=i
(Pj)max =rU,-ri+2mp’ (C.13)

Py-1=i . : -
(Py)pin =rlj-ri-2Mp (C.14) i

When pj_lsp from (C.13) we get:

Pi_
(Pj)mgxlsp=rup-rp+2Mp'

In order for Pj to be bounded, this wvalue should be

equal to U therefore:

Pl
rU _-rp+2Mp'=U
p~PTeMe Vo

or

Upark-ZMk' (C.15)
Similarly for the lower bound:

Pi_1%0

(P,) -1 Ty,

min -
This results in:

L_o=-rk+ 2k’ (c.16)

from (C.15) and (C.16) we get:

rk=2Mk'> Py >-rk+2Mk’ (C.17)




Selection Region

e

Selection regions can be obtained by the help of Equa- ‘

tions (C.13), (cC.14), (C.15) and (C.16) as follows: ;

p._1=i
(Pj)mgx W, for all i's ;

Inserting the values from (C.13) and (C.15) we get: l

U, <i+k-2Mk’ (c.18) i
Also for the lower bound the following inequality is always k
satisfied:
P;_y=1i
(p,) 37} for all i's

j 'min 3L~p
Using (C.14) and (C.16) we get:

L, >i-k+2MK' (c.19)

In order to have maximum overlap between the adjacent
regions i and (i+l), U; should be as large as possible and
L, as small as pogssible. Therefore, from (C.18) and (C.19)

we have:

U =i+k-2Mk'
L, =i-K+2Mk '
(c.20)
and therefore:
p.=i
=Mk > (P T > i-ke2Mk! (c.21)
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In order to have overlap between the adjacent regions

the following inequality should be satisfied:

L,
Ui—-L1+1

from (C.20) we get:

M < %§5L (Cc.22)

This means, the maximum allowable values of the multi-

plicand and multiplier is equal to %ﬁﬁl. If the operands are

larger than this bound, then there will be a gap" between
adjacent regions. That is, there will be some values of Pj

in which there is no acceptable product digit pj.

For example when r=2 and k=k'=l

1
Miz

So shifting the operands two bits to the right will
guarantee the convergence of the algorithm.

Letting j=m in Eq. (C.21) we get:

- 1] - []
P tk-2MKk'> P >p ~k+2Mk

or

k-2Mk'> P _-p  >-k+2Mk'
and since M>0 and k'>0 then Eq. (C.11) is satisfied and R is

indeed the product of X and Y to m digits of precision.
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REMARKS

From Eq. (C.22) it is clear that the on-line multipli-
cation is not possible when k=1/2 or when the product is not

redundant.
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APPENDIX D

ON-LINE ADDITION/SUBTRACTION

In this appendix a systematic derivation of on-line
addition/subtraction algorithms will be presented. This
method is compatible with the methods given for on-line mul-
tiplication and division in Appendix C and [GOR 80] respec-
tively. The derivation is applicable to both redundant and
non-redundant operands. But, in what follows we only consid-

er addition and subtraction with redundant operands.
Addition

Let the radix r representation of addend, augend and

sum be denoted by A, B and R respectively such that:

s . i

ATk AT (D.1)
s i

B= 2 PiT (D.2)
: o o-i

R= E, 51T (D.3)

and R=A+B to m digits of precision.

We assume ag, bi' and 8 belong to three different

redundant digit sets:




ai “ {-p‘l“lrlolll"lp'} (r'l)lp.ir/z (D~4)

b, < {-p.|,..,f,0,1...,p. } (r-l)zp“l:/z (D.5)

s; « {-p,..,1,0,1,..,0} (r-1)> p 2r/2 (D.6)

Redundancy coefficients of A,B and R are defined as:

f

k' r-1
l.. [ ]
x =S

k=L

r-1

{(D.7)

]

The algorithm of the next page generates the sum of A
and B in on-line mode. We call this algorithm "ADD". This
algorithm is a modification of the addition algorithm shown

in [IRW 77].
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Algorithm ADD

Step 1 [Initialization]:

For j=1,2,....,m+1l Do:
Step 2 [Input Digitl:

a. and b,
J J

step 3 [Basic Recursion]:

Step 4 [Selection]:

sj_1=SELECT(er,cj)

vs. - (31

Ry™Rj-2%%3-1

j=2

Step 5 [End Do]
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)+(aj+bj)r-1

(D.8)




Proof of Convergence

Inserting different values of j into the basic recur-

sion formula (Eq. D.8) we get:

j=1 = P =(a;+b, yrt

j=x = -1-
j=2 — P2 (a1+bl)+(a2+b2)r rs,

. -1
j=3 —» 93 r(al+b1)+(a2+b2)+(a3+b3)r

2
r's,-rs,

Therefore, Pj is:

- j-l[ -1 -2 -j]
Pj r (a1+bl)r +(a2+b2)r +...+(aj+bj)r

- j-l[ -1 -(j-2) ]
r so+r S.¥+...%r Sj_2

1l
or
_ i s s_q3-2 s
Pj=rj 1 z (ai+bi)r i_p3-1 T 8, 1 (D.9)
i=1 i=0 *
if j=m+l, then:
m D SERE S |
P .=r" & (a,+b.)r *=-r" ¥ s.r
m+l jmp 1 j=0 1 (D.10)

Using (D.3) we get:

m-1 -i _
R= > sir +smr
i=0




m-1 .

— -1 -
x sir =R-smr
i=0

m

inserting this into (D.10) we obtain:

sm _m - -m
Poi1=T (A+B)-r (R S.F )

rearranging the terms we get:

R=(A+B)~r ™(P_..-s_) (D.11)

m+l “m

By devising a sum digit selection procedure, SELECT, in

step 4 of the Algorithm “ADD", such that:

1P 18, 2 K (D.12)

m+l
R=A+B can be computed to m digits of precision.

Selection Rules

Figure (D.1l) shows a selection graph for the operation
of addition. This is a plot of shifted partial sum versus
the sum of the operand digits (aj and bj) at step Jj. We
designate this as P-c¢ plot. The notations used in this graph

are similar to those used in Appendix C.

In order to derive the range restriction on Pj, our

only assumption will be the basic recursion formula (D.8)

and the fact that Pj should bounded.

k3
4
;
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Figure D.1 - A P-C Plot
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= - -1
Pj r(Pj_1 sj_2)+cjr

c.=3.+b.
s I M

The maximum and th

as follows:

2=

J
U

1?, therefore:

or

2 c
Upsr k - =1

8 =P

(Pj)
This results in:

L_P--rzk - ;;%

from (D.16) and (D.17),

since P, should be bounded,

e minimum values of P

8.
(Pj)mg; -ui-ri-'-cjr-1
(Pj):ggz.i-Li-ri+cjr-l
when sj—z-P from (D.14) we get:
(Pj);g;zapsup—rp+cjr-l

U
-1
Up-rp+cjr = _z"e'

L
-1 -
P+rp+cjr = —?Q

(D.18) will be obtained:

208

(D.13)

are obtained

(D.14)

(D.15)

this value should be equal to

(D.16)

Similar to this, for the lower bound we obtain:

(D.17)

e M

g
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c

C. .
r?k - ;f%l er L-rzk - ;f% (D.18)

Thus, the upper and lower bounds of er are implied by the

recursion formula and not by the selection procedure (as

shown in [IRW 77]).

Selection regions are obtained using Equations (D.14),

(D.15), (D.16) and (D.17) as follows:

sj_2=i
(Pj)max

plugging Equations (D.14) and (D.16) in the above inequality

U
< 1? for all i's

we get:

U, <r(isk) - ;f% (D.19)

Similarly from Equations (D.15) and (D.17) and the re-

lation:
sj_2=i L_
(Pj)min > _;E for all i's
we get:
C.
Lil r(i-x) - ;f% (D.20)

In order to have maximum overlap between the adjacent
regions of the P-c plot, the equality signs of Equations

({D.19) and (D.20) should be satisfied. Therefore:

C.

U =r(isk) - ;_31- (D.21)
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c.
Ly=r(i-k) - ?fk (D.22)
thus, the selection regions are specified by the following

inequality:

>r(i~k) - 1 (D.23)

In order to have overlaps between the adjacent regions
of the P-c plot, Ui should be greater than Li+1 for all i’'s.

That is:

- Kl

Ui2Dis 22

Therefore, there is always overlap between the adjacent re-

gions of the P-c plot.

In order to prove that the relation (D.12) is satisfied

by the given selection procedure, we rewrite Eq. (D.23) as:

C. c.
r(s._1+k) - ;f%l er lr(sj-l_k)

j T r-1

or

c. c.
k - ?T?ETTl Pj_sj-l 27k = FE-

when j=m+l we obtain:

c c
m+l m+l
kK = =172 P17 %> K - r(r-1)

=) - 1=0 and therefore:

since a .,=b, ™+

k> P >~k

m+l-sm -




e gk vy .

Ip <k

m+1~8p ! <
so condition (D.12) is satisfied by the given selection pro-
cedure and R 1is indeed the sum of A and B to m digits of

precision.

Subtraction

Since the subtrahend is represented in redundant for-
mat, subtraction can be performed by just flipping the sign
of the subtrahend digits and following the addition pro-

cedure given above.
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